【題目】方程x2﹣6x+9=0的解是

【答案】x1=x2=3
【解析】解:∵x2﹣6x+9=0
∴(x﹣3)2=0
∴x1=x2=3.
【考點(diǎn)精析】本題主要考查了配方法的相關(guān)知識(shí)點(diǎn),需要掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒(méi)問(wèn)題.左邊分解右合并,直接開(kāi)方去解題才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,且AB≠AD,過(guò)O作OE⊥BD交BC于點(diǎn)E.若△CDE的周長(zhǎng)為10,則平行四邊形ABCD的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】餐桌邊的一蔬一飯,舌尖上的一飲一酌,實(shí)屬來(lái)之不易,舌尖上的浪費(fèi)讓人觸目驚心.據(jù)統(tǒng)計(jì),中國(guó)每年浪費(fèi)的食物總量折合糧食約500億千克,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示為(

A.5×109千克 B.50×109千克

C.5×1010千克 D.0.5×1011千克

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】邊長(zhǎng)都為整數(shù)的△ABC≌△DEF ,AB與DE是對(duì)應(yīng)邊,AB=2,BC=4,若△DEF的周長(zhǎng)為偶數(shù),則 DF的取值為( )
A.3
B.4
C.5
D.3或4或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,

請(qǐng)回答下列問(wèn)題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:運(yùn)用“同一圖形的面積相等”可以證明一些含有線段的等式成立,這種解決問(wèn)題的方法我們稱之為面積法. 如圖1,在等腰△ABC中,AB=AC, AC邊上的高為h,點(diǎn)M為底邊BC上的任意一點(diǎn),點(diǎn)M到腰AB、AC的距離分別為h1h2,連接AM,利用SABC=SABMSACM,可以得出結(jié)論:h= h1h2.

類(lèi)比探究:在圖1中,當(dāng)點(diǎn)MBC的延長(zhǎng)線上時(shí),猜想hh1、h2之間的數(shù)量關(guān)系并證明你的結(jié)論.

拓展應(yīng)用:如圖2,在平面直角坐標(biāo)系中,有兩條直線l1y =x+3,l2y =-3x+3,若l2上一點(diǎn)Ml1的距離是1,試運(yùn)用 “閱讀理解”和“類(lèi)比探究”中獲得的結(jié)論,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點(diǎn),若直線y=﹣x+b與反比例函數(shù)y=的圖象有2個(gè)公共點(diǎn),則b的取值范圍是( 。

A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為m

1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

2)一輛貨運(yùn)汽車(chē)載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車(chē)道,那么這輛貨車(chē)能否安全通過(guò)?

3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分12分)已知,直線AP是過(guò)正方形ABCD頂點(diǎn)A的任一條直線(不過(guò)B、C、D三點(diǎn)),點(diǎn)B關(guān)于直線AP的對(duì)稱點(diǎn)為E,連結(jié)AEBE、DE,直線DE交直線AP于點(diǎn)F

1)如圖1,直線AP與邊BC相交.

∠PAB=20°,則∠ADF= °∠BEF= °;

請(qǐng)用等式表示線段ABDF、EF之間的數(shù)量關(guān)系,并說(shuō)明理由;

2)如圖2,直線AP在正方形ABCD的外部,且,求線段AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案