已知如圖,AD∥BC,∠ABC=90o,AB=BC,點(diǎn)E是AB上的點(diǎn),∠ECD=45o,連接ED,過D作DF⊥BC于F.

(1)若∠BEC=75o,F(xiàn)C=4,求梯形ABCD的周長。(4分)
(2)求證:ED=BE+FC.(6分)
(1)12+4 (2)通過證明△DEC≌△EGC(AAS),得ED="EG" 從而得ED="BE+FC"

試題分析:

(1)∵∠ABC=90o,∠BEC=75o,
∴∠ECB=15o,∵∠ECD=45o,∴∠DCF=60o
在Rt△DFC中:∠DCF=60o,F(xiàn)C=4, ∴DF=4,DC="8"
由題得,四邊形ABFD是矩形∴AB=DF=4,
∵AB=BC,∴BC=4,
∴BF=BC-FC=4-4,∴AD=BF=4-4
∴梯形ABCD的周長為:4+4+8+4-4=12+4
(2)延長EB至G,使BG=CF,連接CG
∵∠CBG=∠DFC=90o,DF="AB=BC" ∴△CBG≌△DFC(SAS)
∴∠CDF=∠GCB,∵∠CDF+∠DCF=90o,∴∠GCB+∠DCF=90o
∵∠DCE=45o,∴∠ECG=45o
∴∠DCE=∠ECG ∴△DEC≌△EGC(AAS),∴ED="EG"
∴ED="BE+FC"
點(diǎn)評(píng):本題考查矩形,梯形、全等三角形,解答本題需要考生熟悉矩形的性質(zhì),梯形的性質(zhì),掌握三角形全等的判定方法,以及全等三角形的性質(zhì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知四邊形ABCD是平行四邊形,AC與BD相交于O點(diǎn),且BC⊥AC,AB=8,∠ABC=30°,

(1)求AD和BD的長;
(2)求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將矩形紙張ABCD四個(gè)角向內(nèi)折起恰好拼成一個(gè)既無縫隙又無重疊的四邊形EFGH,若EH=5,EF=12,則矩形ABCD的面積為
A.30B.60C.120D.240

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知在ABCD中,,,則ABCD的周長等于  
A.10cmB.20cmC.24cm D.30cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如下圖(1),已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到新正方形A2B2C2D2(如圖(2));以此下去,則正方形的面積為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,五邊形ABCDE是由五邊形FGHMN經(jīng)過位似變換得到的,點(diǎn)是位似中心,F(xiàn)、G、H、M、N分別是OA、OB、OC、OD、OE的中點(diǎn),則五邊形ABCDE與五邊形FGHMN的面積比是(   )

A.      B.      C.      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)P是矩形ABCD的邊AD上的一個(gè)動(dòng)點(diǎn),矩形的兩條邊AB、AC的
長分別為3和4,那么點(diǎn)P到矩形的兩條對(duì)角線AC和BD的距離之和是
A.     B.    C.        D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,點(diǎn)P在矩形ABCD內(nèi).若AB=4cm,BC=6cm,AE=CG=3cm,BF=DH=4cm,四邊形AEPH的面積為5cm2,則四邊形PFCG的面積為(   )
 
A.5cm2B.6cm2C.7cm2D.8cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”(如圖1)。圖2由弦圖變化得到,它是由八個(gè)全等的直角三角形拼接而成。記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=21,則S2的值是      

查看答案和解析>>

同步練習(xí)冊(cè)答案