已知:m、n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線y=-x2+bx+c的圖像經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線的解析式;
(2)設(shè)(1)中拋物線與軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積
(3)P是線段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線交于H點(diǎn),若直線BC把△PCH分成面積之比為2∶3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).
(1)解方程x2-6x+5=0得x1=5,x2=1,由m<n,有m=1,n=5,所以點(diǎn)A、B的坐標(biāo)分別為A(1,0),B(0,5).將A(1,0),B(0,5)的坐標(biāo)分別代入y=-x2+bx+c.得解這個(gè)方程組,得所以,拋物線的解析式為y=-x2-4x+5.
(2)由y=-x2-4x+5,令y=0,得-x2-4x+5=0.解這個(gè)方程,得x1=-5,x2=1,所以C點(diǎn)的坐標(biāo)為(-5,0).由頂點(diǎn)坐標(biāo)公式計(jì)算,得點(diǎn)D(-2,9).過(guò)D作x軸的垂線交x軸于M.則S△DMC=×9×(5-2)=,S梯形MDBO=×2×(9+5)=14,S△BOC=×5×5=,所以S△BCD=S梯形MDBO+ S△DMC-S△BOC=14+-=15.
(3)設(shè)P點(diǎn)的坐標(biāo)為(a,0)因?yàn)榫段BC過(guò)B、C兩點(diǎn),所以BC所在的直線方程為y=x+5.那么,PH與直線BC的交點(diǎn)坐標(biāo)為E(a,a+5),PH與拋物線y=-x2-4x+5的交點(diǎn)坐標(biāo)為H(a,-a2-4a+5).由題意,得①EH=EP,即(-a2-4a+5)-(a+5)=(a+5). 解這個(gè)方程,得a=-或a=-5(舍去);②EH=EP,即(-a2-4a+5)-(a+5)=(a+5). 解這個(gè)方程,得a=-或a=-5(舍去);即P點(diǎn)的坐標(biāo)為 (-,0)或 (-,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
m |
m |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
b |
a |
c |
a |
1 |
m |
1 |
n |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
b |
a |
c |
a |
b |
a |
b |
a |
c |
a |
c |
a |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com