【題目】分解因式:4x2﹣16= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為2的菱形ABCD中,∠A=60°,M是AD邊的中點(diǎn),N是AB邊上的一動(dòng)點(diǎn),將△AMN沿MN所在直線翻折得到△A′MN,連接A′C,則A′C長(zhǎng)度的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)O,與BC相交于N,連接MN,DN.請(qǐng)你判定四邊形BMDN是什么特殊四邊形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB邊上的動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BCP沿CP所在的直線翻折,得到△B′CP,連接B′A,則下列判斷:
①當(dāng)AP=BP時(shí),AB′∥CP;
②當(dāng)AP=BP時(shí),∠B′PC=2∠B′AC
③當(dāng)CP⊥AB時(shí),AP=;
④B′A長(zhǎng)度的最小值是1.
其中正確的判斷是 (填入正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備用籬笆圍成一塊矩形花圃ABCD,為了節(jié)省籬笆,一邊利用足夠長(zhǎng)的墻,另外三邊用籬笆圍著,再用兩段籬笆EF與GH將矩形ABCD分割成①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,現(xiàn)有總長(zhǎng)80m的籬笆,當(dāng)圍成的花圃ABCD的面積最大時(shí),AB的長(zhǎng)為 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.(不寫解答過(guò)程,直接寫出結(jié)果)
(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱,則點(diǎn)A1的坐標(biāo)為 ;
(2)將△ABC向右平移4個(gè)單位長(zhǎng)度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為 ;
(3)將△ABC繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°,則點(diǎn)C走過(guò)的路徑長(zhǎng)為 ;
(4)在x軸上找一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠MAN=120°,AC平分∠MAN,點(diǎn)B、D分別在AN、AM上.
(1)如圖1,若∠ABC=∠ADC=90°,請(qǐng)你探索線段AD、AB、AC之間的數(shù)量關(guān)系,并證明之;
(2)如圖2,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,對(duì)角線AC,BD相交于點(diǎn)O,且∠1=∠2.求證:四邊形ABCD是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com