如圖是拋物線y=ax2+bx+c的一部分,其對(duì)稱軸為直線x=1,若其與x軸一交點(diǎn)為B(3,0),則由圖象可知,不等式ax2+bx+c>0的解集是________

答案:
解析:

x>3或x<-1


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(1,0)、B(0,2),拋物線yax2ax2經(jīng)過(guò)點(diǎn)C。

(1)求拋物線的解析式;

(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)PQ,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)如圖②,EBC延長(zhǎng)線上一動(dòng)點(diǎn),過(guò)A.B.E三點(diǎn)作⊙O’,連結(jié)AE,在⊙O’上另有一點(diǎn)F,且AFAE,AFBC于點(diǎn)G,連結(jié)BF。下列結(jié)論:①BEBF的值不變;②,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知四邊形OABC中的三個(gè)頂點(diǎn)坐標(biāo)為O(0,0),A(0,n),C(m,0).動(dòng)點(diǎn)P從點(diǎn)O出發(fā)依次沿線段OA,ABBC向點(diǎn)C移動(dòng),設(shè)移動(dòng)路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù), m>1,n>0.

(1)請(qǐng)你確定n的值和點(diǎn)B的坐標(biāo);

(2)當(dāng)動(dòng)點(diǎn)P是經(jīng)過(guò)點(diǎn)O,C的拋物線yaxbxc的頂點(diǎn),且在雙曲線y上時(shí),求這時(shí)四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖六,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線yax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在此拋物線上,矩形面積為12.

(1)求該拋物線的對(duì)稱軸;

(2)⊙P是經(jīng)過(guò)A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P軸相交,且在軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);

(3)若線段DOAB交于點(diǎn)E,以點(diǎn) D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、OA為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說(shuō)明理由.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(10分)如圖,拋物線F:y=ax 2+bx+c的頂點(diǎn)為P,拋物線F與軸交于點(diǎn)A,

過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,平移拋物線F使其經(jīng)過(guò)點(diǎn)A、D得到拋物線F ′:

y=a′x 2+b′x+c′,拋物線F ′ 與x軸的另一個(gè)交點(diǎn)為C.

(1)當(dāng)a=1,b=-2,c=3時(shí),

①寫出點(diǎn)D的坐標(biāo)   ▲  ; ②求b: 的值;

(2)若a、b、c滿足b 2=ac,探究b: 的值是否為定值?若是定值請(qǐng)求出這個(gè)定值;若不是請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年南京市浦口區(qū)中考數(shù)學(xué)一模試卷 題型:解答題

(10分)如圖,拋物線F:y=ax 2+bx+c的頂點(diǎn)為P,拋物線F與軸交于點(diǎn)A,

過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D,平移拋物線F使其經(jīng)過(guò)點(diǎn)A、D得到拋物線F ′:

y=a′x 2+b′x+c′,拋物線F ′ 與x軸的另一個(gè)交點(diǎn)為C.

(1)當(dāng)a=1,b=-2,c=3時(shí),

①寫出點(diǎn)D的坐標(biāo)   ▲  ; ②求b : 的值;

(2)若a、b、c滿足b 2=ac,探究b : 的值是否為定值?若是定值請(qǐng)求出這個(gè)定值;若不是請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案