【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了_____名學(xué)生,最喜歡用電話溝通的所對應(yīng)扇形的圓心角是____°;

(2)將條形統(tǒng)計圖補(bǔ)充完整;

(3)運(yùn)用這次的調(diào)查結(jié)果估計1200名學(xué)生中最喜歡用QQ進(jìn)行溝通的學(xué)生有多少名?

(4)甲、乙兩名同學(xué)從微信,QQ,電話三種溝通方式中隨機(jī)選了一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲乙兩名同學(xué)恰好選中同一種溝通方式的概率.

【答案】(1)120,54(2)補(bǔ)圖見解析;(3)660名;(4).

【解析】

(1)用喜歡使用微信的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再用360°乘以樣本中電話人數(shù)所占比例;

(2)先計算出喜歡使用短信的人數(shù),然后補(bǔ)全條形統(tǒng)計圖;

(3)利用樣本估計總體,用1200乘以樣本中最喜歡用QQ進(jìn)行溝通的學(xué)生所占的百分比即可;

(4)畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出甲乙兩名同學(xué)恰好選中同一種溝通方式的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1)這次統(tǒng)計共抽查學(xué)生24÷20%120(),其中最喜歡用電話溝通的所對應(yīng)扇形的圓心角是360°×54°,

故答案為:12054;

(2)喜歡使用短信的人數(shù)為120182466210()

條形統(tǒng)計圖為:

(3)1200×660,

所以估計1200名學(xué)生中最喜歡用QQ進(jìn)行溝通的學(xué)生有660名;

(4)畫樹狀圖為:

共有9種等可能的結(jié)果數(shù),甲乙兩名同學(xué)恰好選中同一種溝通方式的結(jié)果數(shù)為3,

所以甲乙兩名同學(xué)恰好選中同一種溝通方式的概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(3,0),B(0,-1),連接AB,B點(diǎn)作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點(diǎn)坐標(biāo);

(2)如圖2,P點(diǎn)從A點(diǎn)出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,C、P、Q三點(diǎn)共線,求此時P點(diǎn)坐標(biāo)及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OAOC分別在x軸,y軸上,OC7,點(diǎn)B在第一象限,點(diǎn)D在邊AB上,點(diǎn)E在邊BC上,且∠BDE30°,將△BDE沿DE折疊得到△BDE.若AD1,反比例函數(shù)yk0)的圖象恰好經(jīng)過點(diǎn)B′,D,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AB5,過點(diǎn)BBDAB,點(diǎn)C,D都在AB上方,AD交△BCD的外接圓⊙O于點(diǎn)E

1)求證:∠CAB=∠AEC

2)若BC3

ECBD,求AE的長.

②若△BDC為直角三角形,求所有滿足條件的BD的長.

3)若BCEC ,則   .(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,AD4,P沿射線BD運(yùn)動,連接AP,將線段AP繞點(diǎn)P順時針旋轉(zhuǎn)90°得線段PQ

(1)當(dāng)點(diǎn)Q落到AD上時,∠PAB____°,PA_____長為_____;

(2)當(dāng)APBD時,記此時點(diǎn)PP0,點(diǎn)QQ0,移動點(diǎn)P的位置,求∠QQ0D的大小;

(3)在點(diǎn)P運(yùn)動中,當(dāng)以點(diǎn)Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;

(4)點(diǎn)P在線段BD上,由BD運(yùn)動過程(包含B、D兩點(diǎn))中,求CQ的取值范圍,直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角尺(在RtΔABC中,ACB=90°,B=60°;在RtΔEDF中,EDF=90°,E=45°)如圖擺放,點(diǎn)DAB的中點(diǎn),DEAC于點(diǎn)P,DF經(jīng)過點(diǎn)C.RtΔEDF繞點(diǎn)D順時針方向旋轉(zhuǎn)角α(0°<α<60°) DEAC于點(diǎn)M,DFBC于點(diǎn)N,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)C,拋物線經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B

1)求拋物線的函數(shù)表達(dá)式;(2)點(diǎn)D為直線AC上方拋物線上一動點(diǎn),

連接BC、CDBD,設(shè)BD交直線AC于點(diǎn)E,△CDE的面積為S1,△BCE的面積為S2.求:的最大值;

如圖2,是否存在點(diǎn)D,使得∠DCA2BAC?若存在,直接寫出點(diǎn)D的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB6AD4,點(diǎn)EBC的中點(diǎn),點(diǎn)FAB上,FB2,P是矩形上一動點(diǎn).若點(diǎn)P從點(diǎn)F出發(fā),沿FADC的路線運(yùn)動,當(dāng)∠FPE30°時,FP的長為_____

查看答案和解析>>

同步練習(xí)冊答案