【題目】解方程(組)

13x2x2;

22x+3)﹣7x52x1);

3;

4

【答案】1x0;(2;(3;(4x=﹣1.

【解析】

1)移項(xiàng),合并同類項(xiàng),系數(shù)化為1,即可得到答案,
2)依次去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1,即可得到答案,
3)利用代入消元法解之即可,
4)依次去分母,去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1,即可得到答案.

解:(1)移項(xiàng)得:3xx=﹣2+2,

2x0

x0;

2)去括號得:2x+67x10x+5,

移項(xiàng)得:2xx+10x56+7

合并同類項(xiàng)得:11x6,

系數(shù)化為1得: ,

3

②代入①得:

4x2x31,

解得:x2

x2代入②得:y7,

4)方程兩邊同時(shí)乘以6得:3x+1)﹣22x1)=6,

去括號得:3x+34x+26,

移項(xiàng)得:3x4x632

合并同類項(xiàng)得:﹣x1,

系數(shù)化為1得:x=﹣1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+2與x軸、y軸分別交于A、B兩點(diǎn),△BAC為等腰直角三角形,且∠BAC=90°.若點(diǎn)C恰好落在函數(shù)y= (x>0)在第一象限內(nèi)的圖象上,則k的值為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(11),B(4,2),C(34)

(1)請畫出將△ABC向左平移4個(gè)單位長度后得到的圖形△A1B1C1;

(2)請畫出△ABC關(guān)于原點(diǎn)O成中心對稱的圖形△A2B2C2

(3)x軸上找一點(diǎn)P,使PAPB的值最小,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示-5,點(diǎn)B表示10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸負(fù)方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)當(dāng)t 秒時(shí),PQ兩點(diǎn)相遇,求出相遇點(diǎn)所對應(yīng)的數(shù);

(2)當(dāng)t為何值時(shí),P,Q兩點(diǎn)的距離為3個(gè)單位長度,并求出此時(shí)點(diǎn)P對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一張矩形紙片ABCD沿著對角線BD向上折疊,頂點(diǎn)C落到點(diǎn)E處,BE交AD于點(diǎn)F.

(1)求證:△BDF是等腰三角形;
(2)如圖2,過點(diǎn)D作DG∥BE,交BC于點(diǎn)G,連接FG交BD于點(diǎn)O.
①判斷四邊形BFDG的形狀,并說明理由;
②若AB=6,AD=8,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,某同學(xué)為了探究這兩個(gè)角的關(guān)系,畫出來以下兩個(gè)不同的圖形,請你根據(jù)圖形完成以下問題:

1)如圖1,如果ABCD,BEDF,那么∠1與∠2的關(guān)系是   ;

如圖2,如果ABCD,BEDF,那么∠1與∠2的關(guān)系是   ;

2)根據(jù)(1)的探究過程,我們可以得到結(jié)論:如果一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角的關(guān)系是   ;

3)利用結(jié)論解決問題:如果有兩個(gè)角的兩邊分別平行,且一個(gè)角比另一個(gè)角的3倍少40°,則這兩個(gè)角分別是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,已知∠1=∠2,∠C=∠D

1)判斷BDCE是否平行,并說明理由;(2)說明∠A=∠F的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)).有下列結(jié)論: ①當(dāng)x=3時(shí),y=0;
②3a+b>0;
③﹣1≤a≤﹣ ;
≤n≤4.
其中正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一定能確定ABC≌△DEF的條件是(

A.AB=DE,BC=EF,A=DB.A=E,AB=EF,B=D

C.A=D,AB=DE,B=ED.A=D,B=E,C=F

查看答案和解析>>

同步練習(xí)冊答案