科目:初中數(shù)學 來源: 題型:
(本題滿分12分)如圖,在邊長為2的正方形ABCD中,P為AB的中點,Q為邊CD上一動點,設(shè)DQ=t(0≤t≤2),線段PQ的垂直平分線分別交邊AD、BC于點M、N,過Q作QE⊥AB于點E,過M作MF⊥BC于點F.
(1)當t≠1時,求證:△PEQ≌△NFM;
(2)順次連接P、M、Q、N,設(shè)四邊形PMQN的面積為S,求出S與自變量t之間的函數(shù)關(guān)系式,并求S的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
(本題滿分8分)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)畫線段AD∥BC且使AD =BC,連接CD;
(2)線段AC的長為 ,CD的長為 ,AD的長為 ;
(3)△ACD為 三角形,四邊形ABCD的面積為 ;
(4)若E為BC中點,則tan∠CAE的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(山東棗莊卷)數(shù)學 題型:解答題
(本題滿分8分)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,請按要求完成下列各題:
(1)畫線段AD∥BC且使AD =BC,連接CD;
(2)線段AC的長為 ,CD的長為 ,AD的長為 ;
(3)△ACD為 三角形,四邊形ABCD的面積為 ;
(4)若E為BC中點,則tan∠CAE的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(內(nèi)蒙古烏蘭察布卷)數(shù)學 題型:解答題
(2011廣西崇左,24,14分)(本小題滿分14分)如圖,在邊長為8的正方形ABCD
中,點O為AD上一動點(4<OA<8),以O為圓心,OA的長為半徑的圓交邊CD于點M,連接OM,過點M作圓O的切線交邊BC于點N.
(1) 求證:△ODM∽△MCN;[來源:學+科+網(wǎng)]
(2) 設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);
(3) 在點O運動的過程中,設(shè)△CMN的周長為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com