【題目】已知:如圖,已知⊙O的半徑為1,菱形ABCD的三個(gè)頂點(diǎn)A、B、D在⊙O上,且CD與⊙O相切.
(1)求證:BC與⊙O相切;
(2)求陰影部分面積.
【答案】(1)證明見(jiàn)解析;(2)-
【解析】試題分析:(1)連結(jié)OB、OD、OC,只要證明△OCD≌△OCB,推出∠ODC=∠OBC,由CD與⊙O相切推出OD⊥CD,推出∠OBC=∠ODC=90°,由此即可證明;
(2)根據(jù)S陰影=2S△DOC-S扇形OBD計(jì)算即可;
試題解析:(1)連結(jié)OB、OD、OC,
∵ABCD是菱形,
∴CD=CB,
∵OC=OC,OD=OB,
∴△OCD≌△OCB,
∴∠ODC=∠OBC,
∵CD與⊙O相切,∴OD⊥CD,
∴∠OBC=∠ODC=90°,
即OB⊥BC,點(diǎn)B在⊙O上,
∴BC與⊙O相切.
(2)∵ABCD是菱形,
∴∠A=∠DCB,
∵∠DOB與∠A所對(duì)的弧都是
∴∠DOB=2∠A,
由(1)知∠DOB+∠C=180°,
∴∠DOB=120°,∠DOC=60°,
∵OD=1,∴OC=2,DC=
∴S陰影=2S△DOC-S扇形OBD=2××1×-=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化簡(jiǎn)求值:已知:(x﹣3)2+|y+|=0,求3x2y﹣[2xy2﹣2(xy )+3xy]+5xy2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某社區(qū)居民的用電情況,隨機(jī)對(duì)該社區(qū)10戶居民進(jìn)行調(diào)查,下表是這10戶居民2017年4月份用電量的調(diào)查結(jié)果:
居 民(戶) | 1 | 2 | 3 | 4 |
月用電量(度/戶) | 30 | 42 | 50 | 51 |
那么關(guān)于這10戶居民月用電量(單位:度),下列說(shuō)法錯(cuò)誤的是( 。
A. 中位數(shù)是50 B. 方差是42 C. 眾數(shù)是51 D. 極差是21
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.
(1)作出與△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;
(2)求出A1 , B1 , C1三點(diǎn)坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答
(1)如圖,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E,F(xiàn)分別是邊BC,CD上的點(diǎn),且∠EAF= ∠BAD.
求證:EF=BE+FD;
(2)如圖,在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F(xiàn)分別是邊BC,CD上的點(diǎn),且∠EAF= ∠BAD,(1)中的結(jié)論是否仍然成立?
(3)如圖,在四邊形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且∠EAF= ∠BAD,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人周末從同一地點(diǎn)出發(fā)去某景點(diǎn),因乙臨時(shí)有事,甲坐地鐵先出發(fā),甲出發(fā)0.2小時(shí)后乙開(kāi)汽車前往.設(shè)甲行駛的時(shí)間為x(h),甲、乙兩人行駛的路程分別為y1(km)與y2(km).如圖①是y1與y2關(guān)于x的函數(shù)圖像.
(1)分別求線段OA與線段BC所表示的y1與y2關(guān)于x的函數(shù)表達(dá)式;
(2)當(dāng)x為多少時(shí),兩人相距6 km?
(3)設(shè)兩人相距S千米,在圖②所給的直角坐標(biāo)系中畫(huà)出S關(guān)于x的函數(shù)圖像.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】寫(xiě)出一個(gè)正比例函數(shù),使其圖象經(jīng)過(guò)第二、四象限:y=_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD=CB,E,F(xiàn)是AC上兩動(dòng)點(diǎn),且有DE=BF.
(1)若點(diǎn)E,F(xiàn)運(yùn)動(dòng)至如圖(1)所示的位置,且有AF=CE,求證:△ADE≌△CBF;
(2)若點(diǎn)E,F(xiàn)運(yùn)動(dòng)至如圖(2)所示的位置,仍有AF=CE,則△ADE≌△CBF還成立嗎?為什么?
(3)若點(diǎn)E,F(xiàn)不重合,則AD和CB平行嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com