已知點和點,且直線與坐標軸圍成的三角形的面積等于10,則的值是                 

 

【答案】

±4

【解析】由題意可得5×|OA|÷2=10,

∴|OA|= ,

∴|OA|=4,

∴點a的值是4或-4

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線數(shù)學公式經(jīng)過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍.
(1)求此拋物線的解析式和直線的解析式;
(2)如果點P和點Q同時出發(fā),運動時間為t(秒),試問當t為何值時,△PQA是直角三角形;
(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大?若存在,求出點D坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,拋物線y=ax2+bx(a≠0)與雙曲線數(shù)學公式相交于點A、B.已知點B的坐標為(-2,-2),點A在第一象限內(nèi)且縱坐標為4.過點A作直線AC∥x軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)在拋物線y=ax2+bx的對稱軸上有一點Q,設w=BQ2+AQ2,試求出使w的值最小的點Q的坐標;
(3)在圖1的基礎上,點D是x軸上一點,且OD=4,連接CD、AD(如圖2),直線CD交y軸于點M,連接AM,動點P從點C出發(fā),沿折線CAD方向以1個單位/秒的速度向終點D勻速運動,設△PMA的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關系式(要求寫出自變量t的取值范圍).
作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在平面直角坐標系中,已知點M的坐標是(3,0),半徑為2的⊙M交x軸于E、F

兩點,過點P(-1,0)作⊙M的切線,切點為點A,過點A作AB⊥x軸于點C,交⊙M于

點B。拋物線yax2bxc經(jīng)過P、B、M三點。

1.(1)求該拋物線的函數(shù)表達式;(3分)

2.(2)若點Q是拋物線上一動點,且位于P、B兩點之間,設四邊形APQB的面積為S,點Q

橫坐標為x,求S與x之間的函數(shù)關系式,并求S的最大值和此時點Q的坐標;(4分)

3.(3)如圖2,將弧AEB沿弦AB對折后得到弧AE′B,試判斷直線AF與弧AE′B的位置關系,

并說明理由。(3分)

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江杭州蕭山區(qū)黨灣鎮(zhèn)初中八年級12月月考數(shù)學試卷(帶解析) 題型:解答題

如圖,已知一次函數(shù)y=-x +7與正比例函數(shù)y=x的圖象交于點A,且與x軸交于點B.

(1)求點A和點B的坐標;
(2)過點A作AC⊥y軸于點C,過點B作直線l∥y軸.動點P從點O出發(fā),以每秒1個單位長的速度,沿O—C—A的路線向點A運動;同時直線l從點B出發(fā),以相同速度向左平移,在平移過程中,直線l交x軸于點R,交線段BA或線段AO于點Q.當點P到達點A時,點P和直線l都停止運動.在運動過程中,設動點P運動的時間為t秒.
①當t為何值時,以A、P、R為頂點的三角形的面積為8?
②是否存在以A、P、Q為頂點的三角形是等腰三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案