【題目】如圖,已知直線為常數(shù))經(jīng)過拋物線上的點及拋物線的頂點.拋物線與軸交于點,與軸的另一個交點為

1)求的值和點的坐標;

2)根據(jù)圖象,寫出滿足的取值范圍;

3)求四邊形的面積.

【答案】1,;(2;(34

【解析】

(1)將A的坐標帶入拋物線解析式即可得出K的值,同理求出M的值然后利用配方法把一般式配為頂點式,即可得出B的坐標;

(2)將A、B的坐標分別帶入即可解答.

(3)先求出點C的坐標和點D的坐標,將四邊形ABCD的面積分為,即可計算解答.

:(1)將點代入,得,

解得

將點代入,得,

解得

∴拋物線的解析式為

∴點的坐標為

2)∵,坐標分別為,

∴當時,的取值范圍是

3)函數(shù),當時,

∴點坐標為,

時,,

解方程得,

∴點坐標為

四邊形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰RtABC中,∠BAC90°,BC2,點PABC內部的一個動點,且滿足∠PBC=∠PCA,則線段AP長的最小值為(  )

A.0.5B.1C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,拋物線的頂點為,經(jīng)過拋物線上的兩點的直線交拋物線的對稱軸于點

1)求拋物線的解析式和直線的解析式.

2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.

3)若點在拋物線上,點軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們把兩邊之比為整數(shù)的三角形稱為倍比三角形.其中,這個整數(shù)比稱為倍比,第三條邊叫做該三角形的底.

1)如圖1,ABC是以AC為底的倍比三角形,倍比為3,若∠C=90°,AC=2,求BC的長;

2)如圖2,ABC中,DBC邊上一點,BD=3CD=1,連結AD.若AC=2,求證:ABD是倍比三角形,并求出倍比;

3)如圖3,菱形ABCD中,∠BAD為鈍角,P為對角線BD上一動點,過PPHCDH、當CP+PH的值最小時,APCD恰好是以PD為底的倍比三角形,記倍比為x,=y,求y關于x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我縣實施新課程改革后,學習的自主字習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期半個月的跟蹤調査,并將調査結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調査結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖下列問題:

1)本次調查中,張老師一共調査了  名同學,其中C類女生有  名,D類男生有  名;

2)將上面的條形統(tǒng)計圖補充完整;

3)為了共同進步,張老師想從被調査的A類和D類學生中分別選取一位同學迸行一幫一互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的方程有唯一實數(shù)解,且反比例函數(shù)的圖象在每個象限內的增大而增大,那么反比例函數(shù)的關系式為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角標系中,拋物線Cyx軸交于AB兩點(點A在點B的左側),與y軸交于點C,點Dy軸正半軸上一點.且滿足ODOC,連接BD

1)如圖1,點P為拋物線上位于x軸下方一點,連接PB,PD,當SPBD最大時,連接AP,以PB為邊向上作正BPQ,連接AQ,點M與點N為直線AQ上的兩點,MN2且點N位于M點下方,連接DN,求DN+MN+AM的最小值

2)如圖2,在第(1)問的條件下,點C關于x軸的對稱點為E,將BOE繞著點A逆時針旋轉60°得到B′O′E′,將拋物線y沿著射線PA方向平移,使得平移后的拋物線C′經(jīng)過點E,此時拋物線C′x軸的右交點記為點F,連接E′FB′F,R為線段E’F上的一點,連接B′R,將B′E′R沿著B′R翻折后與B′E′F重合部分記為B′RT,在平面內找一個點S,使得以B′RT、S為頂點的四邊形為矩形,求點S的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從甲、乙、丙三名同學中隨機抽取環(huán)保志愿者,求下列事件的概率:

1)抽取1名,恰好是甲;

2)抽取2名,甲在其中.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程(a﹣1x2+2x+a﹣1=0

1)若該方程有一根為2,求a的值及方程的另一根;

2)當a為何值時,方程僅有一個根?求出此時a的值及方程的根.

查看答案和解析>>

同步練習冊答案