(2012•成華區(qū)一模)某花園內(nèi)有一塊五邊形的空地如圖所示,為了美化環(huán)境,現(xiàn)計劃在五邊形各頂點為圓心,2m長為半徑的扇形區(qū)域(陰影部分)種上花草,那么種上花草的扇形區(qū)域總面積是
6πm2
6πm2
分析:先根據(jù)多邊形的內(nèi)角和定理得到五邊形的內(nèi)角和=(5-2)×180°=540°,然后根據(jù)扇形的面積公式得到五個扇形的面積和=
540•π•22
360
=6π.
解答:解:∵五邊形的內(nèi)角和=(5-2)×180°=540°,
∴五個扇形的面積和=
540•π•22
360
=6π,
∴種上花草的扇形區(qū)域總面積6πm2
故答案為6πm2
點評:本題考查了多邊形的內(nèi)角和定理:n邊形的內(nèi)角和為(n-2)•180°.也考查了扇形的面積公式.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•成華區(qū)一模)我省某縣在實施“村村通工程”中,對甲、乙兩村之間的道路進行改造,施工隊在工作了一段時間后,因暴雨被迫停工幾天,不過施工隊隨后加快了施工進度,按期完成了兩村之間的道路改造.下面能反映該工程尚未改造的道路里程y(千米)與時間x(天)的函數(shù)關系的大致圖象是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•成華區(qū)一模)某計算程序編輯如圖所示,當輸入x=
±4
±4
,輸出y=1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•成華區(qū)一模)如圖,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.點P從點A出發(fā)沿AC以1.5cm/s的速度向點C勻速運動,到達點C后立刻以原來的速度沿CA返回;點Q從點B出發(fā)沿BA以1cm/s的速度向點A勻速運動.伴隨著P、Q的運動,DE保持垂直平分PQ,且交PQ于點D,交折線PC-CB-BQ于點E.點P、Q同時出發(fā),當點Q到達點A時停止運動,點P也隨之停止.設點P、Q運動的時間是t秒(t>0),則當t=
25
11
40
23
25
11
40
23
秒時,四邊形BQDE為直角梯形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•成華區(qū)一模)已知兩直線l1、l2分別經(jīng)過點A(3,0),點B(-1,0),并且當兩條直線同時相交于y軸負半軸的點C時,恰好有l(wèi)1⊥l2,經(jīng)過點A、B、C的拋物線的對稱軸與直線l2交于點K,如圖所示.
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使得以A、B、C、P為頂點的四邊形的面積等于△ABC的面積的
32
倍?若存在,求出點P的坐標;若不存在,請說明理由.
(3)將直線l1按順時針方向繞點C旋轉(zhuǎn)α°(0<α<90),與拋物線的另一個交點為M.求在旋轉(zhuǎn)過程中△MCK為等腰三角形時的α的值.

查看答案和解析>>

同步練習冊答案