【題目】如圖,在菱形ABCD中,tanA= ,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H,給出如下幾個(gè)結(jié)論:(1)△AED≌△DFB;(2)CG與BD一定不垂直;(3)∠BGE的大小為定值;(4)S四邊形BCDG= CG2;其中正確結(jié)論的序號(hào)為 .
【答案】(1)(3)(4)
【解析】解:(1)∵四邊形ABCD為菱形,
∴AB=AD.
∵AB=BD,
∴△ABD為等邊三角形.
∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,
在△AED和△DFB中,
,
∴△AED≌△DFB,故本小題正確;
(2)當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí)(如圖1),
由(1)知,△ABD,△BDC為等邊三角形,
∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),
∴∠BDE=∠DBG=30°,
∴DG=BG,
在△GDC與△BGC中,
,
∴△GDC≌△BGC,
∴∠DCG=∠BCG,
∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;(3)∵△AED≌△DFB,
∴∠ADE=∠DBF,
∴∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,故本選項(xiàng)正確.(4)∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴點(diǎn)B、C、D、G四點(diǎn)共圓,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
∴∠BGC=∠DGC=60°.
過點(diǎn)C作CM⊥GB
于M,CN⊥GD于N.(如圖2)
則△CBM≌△CDN,(AAS)
∴S四邊形BCDG=S四邊形CMGN ,
S四邊形CMGN=2S△CMG ,
∵∠CGM=60°,
∴GM= CG,CM= CG,
∴S四邊形CMGN=2S△CMG=2× × CG× CG= CG2 , 故本小題正確.
綜上所述,正確的結(jié)論有(1)(3)(4).
所以答案是:((1)(3)(4).
【考點(diǎn)精析】掌握菱形的性質(zhì)和圓內(nèi)接四邊形的性質(zhì)是解答本題的根本,需要知道菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半;把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3cm,動(dòng)點(diǎn)M自A點(diǎn)出發(fā)沿AB方向以每秒1cm的速度運(yùn)動(dòng),同時(shí)點(diǎn)N自D點(diǎn)出發(fā)沿折線DC﹣CB以每秒2cm的速度運(yùn)動(dòng),到達(dá)B點(diǎn)時(shí)運(yùn)動(dòng)同時(shí)停止,設(shè)△AMN的面積為y(cm2),運(yùn)動(dòng)時(shí)間為x(秒),則下列圖象中能大致反映y與x之間函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上,將邊長(zhǎng)相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,如圖,則∠3+∠1﹣∠2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,EF與AB、CD分別相交于點(diǎn)E、F,EP⊥EF,與∠EFD的平分線FP相交于點(diǎn)P,且∠BEP=50°,則∠EPF=( )度.
A.70
B.65
C.60
D.55
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價(jià)y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請(qǐng)解釋圖中點(diǎn)D的橫坐標(biāo)、縱坐標(biāo)的實(shí)際意義;
(2)求線段AB所表示的y1與x之間的函數(shù)表達(dá)式;
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時(shí),獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等, = = ,利用上述結(jié)論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵ = ∴b= = = =3 .
理解應(yīng)用:
如圖,甲船以每小時(shí)30 海里的速度向正北方向航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10 海里.
(1)判斷△A1A2B2的形狀,并給出證明;
(2)求乙船每小時(shí)航行多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=5cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動(dòng)點(diǎn),△PMN周長(zhǎng)的最小值是5cm,則∠AOB的度數(shù)是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點(diǎn)D,連接OD,AB=,∠CBO=45°,在直線BE上求點(diǎn)M,使△BMC與△ODC相似,則點(diǎn)M的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com