已知直線l1yx+3與l2y=-2x交于點(diǎn)B,直線l1x軸交于點(diǎn)A,動(dòng)點(diǎn)P在線段OA上移動(dòng)(不與點(diǎn)A、O重合).

(1)求點(diǎn)B的坐標(biāo);

(2)過點(diǎn)P作直線lx軸垂直,設(shè)P點(diǎn)的橫坐標(biāo)為x,△ABO中位于直線l左側(cè)部分的面積為S,求Sx之間的函數(shù)關(guān)系式.

答案:
解析:

  解:(1)由  得

  ∴點(diǎn)B的坐標(biāo)為(-1,2)

  (2)設(shè)點(diǎn)P的坐標(biāo)為(x,0),()

  ∴直線l與直線l1交于點(diǎn)C(x,x+3),

  與直線l2交于點(diǎn)D(x,-2x)

  當(dāng)時(shí),

  S

  當(dāng)時(shí),

  S=3-x2

  ∴


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年四川省攀枝花市中考數(shù)學(xué)試卷 題型:022

如圖,已知直線l1:y=x+與直線l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG∶S△ABC=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當(dāng)ab時(shí),等號(hào)成立.

結(jié)論:在ab≥2a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)ab時(shí),ab有最小值2.  根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當(dāng)m       時(shí),m有最小值         ;

m>0,只有當(dāng)m       時(shí),2m有最小值        .

(2)如圖,已知直線L1:y=x+1與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=

x>0)相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CDy軸交直線L1于點(diǎn)D,試

求當(dāng)線段CD最短時(shí),點(diǎn)A、BC、D圍成的四邊形面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對(duì)于任意正實(shí)數(shù)ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當(dāng)ab時(shí),等號(hào)成立.
結(jié)論:在ab≥2a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)ab時(shí),ab有最小值2.  根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m      時(shí),m有最小值        ;
m>0,只有當(dāng)m      時(shí),2m有最小值       .
(2)如圖,已知直線L1:y=x+1與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=
x>0)相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CDy軸交直線L1于點(diǎn)D,試
求當(dāng)線段CD最短時(shí),點(diǎn)A、BC、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省江陰華士片八年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題

閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當(dāng)ab時(shí),等號(hào)成立.
結(jié)論:在ab≥2a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)ab時(shí),ab有最小值2.  根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m      時(shí),m有最小值        ;
m>0,只有當(dāng)m      時(shí),2m有最小值       .
(2)如圖,已知直線L1:y=x+1與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=
x>0)相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CDy軸交直線L1于點(diǎn)D,試
求當(dāng)線段CD最短時(shí),點(diǎn)A、BC、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省江陰華士片八年級(jí)下學(xué)期期中考試數(shù)學(xué)卷(解析版) 題型:解答題

閱讀理解:對(duì)于任意正實(shí)數(shù)ab,∵()2≥0,∴a-2b≥0,∴ab≥2,只有當(dāng)ab時(shí),等號(hào)成立.

結(jié)論:在ab≥2ab均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)ab時(shí),ab有最小值2.   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當(dāng)m       時(shí),m有最小值         ;

m>0,只有當(dāng)m       時(shí),2m有最小值        .

(2)如圖,已知直線L1:y=x+1與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=

x>0)相交于點(diǎn)B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CDy軸交直線L1于點(diǎn)D,試

求當(dāng)線段CD最短時(shí),點(diǎn)A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案