【題目】已知某種高新技術(shù)設(shè)備的生產(chǎn)成本不高于50萬元/套,售價不低于90萬元/套.已知這種設(shè)備的月產(chǎn)量x()與每套的售價y1(萬元)之間滿足關(guān)系式y1=170-2x,月產(chǎn)量x()與生產(chǎn)總成本y2(萬元)存在如圖9所示的函數(shù)關(guān)系.

(1)直接寫出y2x之間的函數(shù)關(guān)系式,并求月產(chǎn)量x的取值范圍;

(2)當月產(chǎn)量x()為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?

【答案】(1)y2=30x+500,25≤x≤40;(2)當月產(chǎn)量為35套時,利潤最大,最大利潤是1 950萬元.

【解析】

(1)設(shè)函數(shù)關(guān)系式為y2=kx+b,把(30,1400)(40,1700)代入求解即可;根據(jù)題中條件每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于90萬元列出不等式組求解月產(chǎn)量x的范圍;

(2)根據(jù)等量關(guān)系設(shè)備的利潤=每臺的售價×月產(chǎn)量-生產(chǎn)總成本列出函數(shù)關(guān)系式求得最大值.

(1)設(shè)函數(shù)關(guān)系式為y2=kx+b,把坐標(30,1400)(40,1700)代入,

,解得:,

∴函數(shù)關(guān)系式y2=30x+500,

依題意得:

解得:25≤x≤40;

(2)W=xy1-y2=x(170-2x)-(500+30x)=-2x2+140x-500,

W=-2(x-35)2+1950,

25≤x≤40,

∴當x=35時,W最大=1950.

答:當月產(chǎn)量為35件時,利潤最大,最大利潤是1950萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,是雙曲線與直線的兩個交點,、都垂直于軸,垂足為、,那么四邊形的面積是( )

A. 3 B. 6 C. 9 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)實踐活動小組借助載有測角儀的無人機測量象山嵐光閣與文明湖湖心亭之間的距離.如圖,無人機所在位置P與嵐光閣閣頂A、湖心亭B在同一鉛垂面內(nèi),PB的垂直距離為300米,AB的垂直距離為150米,在P處測得A、B兩點的俯角分別為α、β,且tanα=,tanβ=﹣1,試求嵐光閣與湖心亭之間的距離AB.(計算結(jié)果若含有根號,請保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲樓樓高米,乙樓座落在甲樓的正北面,已知當?shù)囟林形?/span>時太陽光線與水平面的夾角為,此時求:

①如果兩樓相距米,那么甲樓的影子落在乙樓上有多高?________

②如果甲樓的影子剛好不落在乙樓上,那么兩樓的距離應(yīng)當是________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架米長的梯子斜靠在與地面垂直的墻上,梯子與地面的傾斜角

的長;

若梯子頂端沿下滑,如圖,設(shè)點下滑至點,點向右滑行至點.若,試求梯子頂端沿下滑多少米;

若梯子頂端沿下滑,如圖,設(shè)點下滑至點,點向右滑行至點,梯子的中點,也隨之運動到點,若,試求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形OABC中,,點的坐標分別為,點DAB上一點,且,雙曲線經(jīng)過點D,交BC于點E

求雙曲線的解析式;

求四邊形ODBE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x﹣(m﹣2)=0有實數(shù)根.

(1)求m的取值范圍;

(2)若方程有一個根為x=1,求m的值及另一個根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點E在邊AD(不與A,D重合),點F在邊CD上,且∠EBF=45°,若△ABE的外接圓⊙OCD邊相切.

(1)⊙O的半徑長;

(2)△BEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,ECB的延長線上,連結(jié)AC、AEACB=BAE=45°

1)求證:AE是⊙O的切線;

2)若AB=AD,AC=tanADC=3,BE的長

查看答案和解析>>

同步練習(xí)冊答案