已知:在△ABC中,以AC邊為直徑的⊙O交BC于點(diǎn)D,在劣弧上取一點(diǎn)E使∠EBC = ∠DEC,延長(zhǎng)BE依次交AC于G,交⊙O于H.
(1)求證:AC⊥BH
(2)若∠ABC= 45°,⊙O的直徑等于10,BD =8,求CE的長(zhǎng).
證明:(1)連結(jié)AD
∵∠DAC = ∠DEC ∠EBC = ∠DEC
∴∠DAC = ∠EBC
又∵AC是⊙O的直徑 ∴∠ADC=90°
∴∠DCA+∠DAC=90° ∴∠EBC+∠DCA = 90°
∴∠BGC=180°–(∠EBC+∠DCA) = 180°–90°=90°
∴AC⊥BH
(2)∵∠BDA=180°–∠ADC = 90° ∠ABC = 45° ∴∠BAD = 45°
∴BD = AD
∵BD = 8 ∴AD =8
又∵∠ADC = 90° AC =10
∴由勾股定理 DC== = 6
∴BC=BD+DC=8+6=14
又∵∠BGC = ∠ADC = 90° ∠BCG =∠ACD
∴△BCG∽△ACD
∴ =
∴ = ∴CG =
連結(jié)AE ∵AC是直徑 ∴∠AEC=90° 又因 EG⊥AC
∴ △CEG∽△CAE ∴ = ∴CE2=AC · CG = ´ 10 = 84
∴CE = = 2 (10分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
a |
a2-2a+1 |
a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com