求滿足下列等式的x的值.
(1)(x-1)2=4;                        
(2)x3+8=0.
考點:立方根,平方根
專題:
分析:(1)根據(jù)開方運算,可得一元一次方程,根據(jù)解一元一次方程,可得答案;
(2)根據(jù)移項,可得乘方的形式,根據(jù)開方運算,可得答案.
解答:解:(1)開方,得
x-1=2或x-1=-2,
解得x=3或x=-1;
(2)移項,得
x3=-8,
開方,得
x=-2.
點評:本題考查了立方根,先化成乘方的形式,再開方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD中,分別以B、D為圓心,以正方形的邊長a為半徑畫弧,形成樹葉形(陰影部分)圖案,則樹葉形圖案的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

提高南京長江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù)圖象如下.當(dāng)車流密度不超過20輛/千米,此時車流速度為60千米/小時.研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù);當(dāng)橋上的車流密度達到200輛/千米,造成堵塞,此時車流速度為0.

(1)求當(dāng)20≤x≤200時大橋上的車流速度v與車流密度x的函數(shù)關(guān)系式.
(2)車流量y(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)滿足y=x•v,當(dāng)車流密度x為多大時,車流量y可以達到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀下面材料:
在學(xué)習(xí)小組活動中,小明探究了下面問題:菱形紙片ABCD的邊長為2,折疊菱形紙片,將B、D兩點重合在對角線BD上的同一點處,折痕分別為EF、GH.當(dāng)重合點在對角線BD上移動時,六邊形AEFCHG的周長的變化情況是怎樣的?
小明發(fā)現(xiàn):若∠ABC=60°,

①如圖1,當(dāng)重合點在菱形的對稱中心O處時,六邊形AEFCHG的周長為
 
;
②如圖2,當(dāng)重合點在對角線BD上移動時,六邊形AEFCHG的周長
 
(填“改變”或“不變”).
請幫助小明解決下面問題:
如果菱形紙片ABCD邊長仍為2,改變∠ABC的大小,折痕EF的長為m.
(1)如圖3,若∠ABC=120°,則六邊形AEFCHG的周長為
 

(2)如圖4,若∠ABC的大小為2α,則六邊形AEFCHG的周長可表示為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程x2-(5m+1)x+4m2+m=0.
(1)求證:無論m取何實數(shù)時,原方程總有兩個實數(shù)根;
(2)若原方程的兩個實數(shù)根一個大于3,另一個小于8,求m的取值范圍;
(3)拋物線y=-x2+(5m+1)x-4m2-m與x軸交于點A、B(點A在點B的左側(cè)),現(xiàn)坐標(biāo)系內(nèi)有一矩形OCDE,如圖,點C(0,-5),D(6,-5),E(6,0),當(dāng)m取第(2)問中符合題意的最小整數(shù)時,將此拋物線上下平移|h|個單位,使平移后的拋物線與矩形OCDE有兩個交點,請結(jié)合圖形寫出h的取值或取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
4
-
38
+
3-
1
27
-(-
1
3
)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=8,BC=6,點E是邊CD上一個動點(點E與點C、點D不重合),連接AE,作AF⊥AE,交直線CB于點F,連接EF,交邊AB于點G.設(shè)DE=x,BF=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式,并且直接寫出x的取值范圍;
(2)如果△AEF∽△DEA,試證明:BF=AD;
(3)當(dāng)E點在CD上運動時,△AEG能否成為以EG為一腰的等腰三角形?如果能,試求出DE的長;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某景點在山頂C處,以前人們從A處出發(fā)沿著坡比為1:2的緩坡AB爬行200米到達B處,再由B處沿著坡角為60°的陡坡BC蹬階180米到達C處,整個路程比較危險.后來管理部門在A、C之間架設(shè)了索道,已知索道AC與水平面AE的夾角為45°,求索道AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD繞B點逆時針旋轉(zhuǎn)得到正方形BPQR,連接DQ,延長CP交DQ于E.若CE=5
2
,ED=4,則AB=
 

查看答案和解析>>

同步練習(xí)冊答案