【題目】已知拋物線頂點(diǎn)在軸負(fù)半軸上,與軸交于點(diǎn),,為等腰直角三角形.
(1)求拋物線的解析式
(2)若點(diǎn)在拋物線上,若為直角三角形,求點(diǎn)的坐標(biāo)
(3)已知直線過(guò)點(diǎn),交拋物線于點(diǎn)、,過(guò)作軸,交拋物線于點(diǎn),求證:直線經(jīng)過(guò)一個(gè)定點(diǎn),并求定點(diǎn)的坐標(biāo).
【答案】(1);(2)或;(3)(-1,4)
【解析】
(1)先求出頂點(diǎn)坐標(biāo)與y軸交點(diǎn)坐標(biāo),根據(jù)頂點(diǎn)式求二次函數(shù)解析式;
(2)根據(jù)直角三角形的判定定理找出△ABC為直角三角形,分三種情況:當(dāng)A為直角頂點(diǎn)時(shí),AC⊥AB;當(dāng)B為直角頂點(diǎn)時(shí),BC⊥AB;當(dāng)C為直角頂點(diǎn),分別確定點(diǎn)C的坐標(biāo);
(3)根據(jù)二次函數(shù)與方程的關(guān)系求解.
(1)∵OB=1,點(diǎn)B在y軸的正半軸上,
∴B(0,1),
∵△OAB為等腰直角三角形,
∴OA=OB=1,
∵頂點(diǎn)A在x軸負(fù)半軸上,
∴頂點(diǎn)A(-1,0),
∴設(shè)y=a(x+1)2,
把B(0,1)代入得
1=a×(0+1)2,
∴a=1,
∴,
(2)當(dāng)A為直角頂點(diǎn)時(shí),AC⊥AB,
設(shè)直線AB解析式為y=mx+n,
∵B(0,1),A(-1,0),
∴,
∴,
∴直線AB解析式為y=x+1,
∵AC⊥AB,
∴直線AC解析式為y=-x-1,
聯(lián)立得,
解得:,,
∴C(-2,1).
當(dāng)B為直角頂點(diǎn)時(shí),BC⊥AB,
∵直線AB解析式為y=x+1,
∴直線BC解析式為y=-x+1,
同理可得C(-3,4),
當(dāng)C為直角頂點(diǎn)不存在 .
綜上所述點(diǎn)C坐標(biāo)為(-2,1)或(-3,4),
(3)設(shè)DE的解析式為,
聯(lián)立,
∴,
得:,
∵D,E關(guān)于對(duì)稱軸對(duì)稱,
所以,
設(shè)EF的解析式為聯(lián)立,
,
得,
,
聯(lián)立①②③④得n=m+4,
所以,過(guò)定點(diǎn)(-1,4),
即直線EF經(jīng)過(guò)一個(gè)定點(diǎn),定點(diǎn)的坐標(biāo)為(-1,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1 ,它與x軸交于兩點(diǎn)O,A;將C1繞點(diǎn)A旋轉(zhuǎn)180°得到C2 , 交x軸于A1;將C2繞點(diǎn)A1旋轉(zhuǎn)180°得到C3 , 交x軸于點(diǎn)A2 . .....如此進(jìn)行下去,直至得到C2018 , 若點(diǎn)P(4035,m)在第2018段拋物線上,則m的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D.
(1)請(qǐng)直接寫(xiě)出D點(diǎn)的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),A(4,0),B(-4,0),D是y軸上的一個(gè)動(dòng)點(diǎn),∠ADC=90°(A、D、C按順時(shí)針?lè)较蚺帕?/span>), BC與經(jīng)過(guò)A、B、D三點(diǎn)的⊙M交于點(diǎn)E,DE平分∠ADC,連結(jié)AE,BD.顯然ΔDCE、ΔDEF、ΔDAE是半直角三角形.
(1)求證:ΔABC是半直角三角形;
(2)求證:∠DEC=∠DEA;
(3)若點(diǎn)D的坐標(biāo)為(0,8),求AE的長(zhǎng);
(4)BC交y軸于點(diǎn)N,問(wèn)的值是否發(fā)生變化?若不發(fā)生變化,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+8與x軸相交于點(diǎn)A(﹣2,0)和點(diǎn)B(4,0),與y軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)P.點(diǎn)D(0,4)在OC上,聯(lián)結(jié)BC、BD.
(1)求拋物線的表達(dá)式并直接寫(xiě)出點(diǎn)P的坐標(biāo);
(2)點(diǎn)E為第一象限內(nèi)拋物線上一點(diǎn),如果△COE與△BCD的面積相等,求點(diǎn)E的坐標(biāo);
(3)點(diǎn)Q在拋物線對(duì)稱軸上,如果△BCD∽△CPQ,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x(x≤90)天的售價(jià)與銷量的相關(guān)信息如右表.已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤(rùn)為y元.
時(shí)間x(天) | 1≤x<50 | 50≤x≤90 |
售價(jià)(元件) | x+40 | 90 |
每天銷量(件) | 200-2x |
(1)求出y與x的函數(shù)關(guān)系式;
(2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長(zhǎng);
(2)當(dāng)洪水泛濫到跨度只有30米時(shí),要采取緊急措施,若拱頂離水面只有4米,即PE=4米時(shí),是否要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,AB=AC,將線段BA繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到BD,使BD⊥AC于H,連結(jié)AD并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)P.
(1)依題意補(bǔ)全圖形;
(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);
(3)小明作了點(diǎn)D關(guān)于直線BC的對(duì)稱點(diǎn)點(diǎn)E,從而用等式表示線段DP與BC之間的數(shù)量關(guān)系.請(qǐng)你用小明的思路補(bǔ)全圖形并證明線段DP與BC之間的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com