【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點(diǎn)E在AD上,且AE=2ED.
(Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面積是梯形ABCD面積的 ,求點(diǎn)E到平面PBC的距離.
【答案】解:(Ⅰ)證明:∵AB⊥AC,AB=AC,∴∠ACB=45°, ∵底面ABCD是直角梯形,∠ADC=90°,AD∥BC,
∴∠ACD=45°,即AD=CD,
∴ ,
∵AE=2ED,CF=2FB,∴ ,
∴四邊形ABFE是平行四邊形,則AB∥EF,
∴AC⊥EF,
∵PA⊥底面ABCD,∴PA⊥EF,
∵PA∩AC=A,
∴EF⊥平面PAC,∵EF平面PEF,
∴平面PEF⊥平面PAC.
(Ⅱ)解:∵PA⊥底面ABCD,且AB=AC,∴PB=PC,
取BC的中點(diǎn)為G,連接AG,則AG⊥BC,AG=CD=1
設(shè)PA=x,連接PG,則 ,
∵側(cè)面PBC的面積是底面ABCD的 倍,
∴ ,即PG=2,求得 ,
∵AD∥BC,∴E到平面PBC的距離即時(shí)A到平面PBC的距離,
∵VA﹣PBC=VP﹣ABC , S△PBC=2S△ABC ,
∴E到平面PBC的距離為 .
【解析】(Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,證明EF⊥平面PAC,即可證明:平面PEF⊥平面PAC;(Ⅱ)E到平面PBC的距離即時(shí)A到平面PBC的距離,利用VA﹣PBC=VP﹣ABC , 求點(diǎn)E到平面PBC的距離.
【考點(diǎn)精析】掌握平面與平面垂直的判定是解答本題的根本,需要知道一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列圖形中,既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形的是( )
A.直角三角形
B.正五邊形
C.正方形
D.平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銷(xiāo)售公司為了解員工的月工資水平,從1000位員工中隨機(jī)抽取100位員工進(jìn)行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計(jì)該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營(yíng)銷(xiāo)水平為重要依據(jù)來(lái)確定的,一般認(rèn)為,工資低于4500元的員工屬于學(xué)徒階段,沒(méi)有營(yíng)銷(xiāo)經(jīng)驗(yàn),若進(jìn)行營(yíng)銷(xiāo)將會(huì)失;高于4500元的員工是具備營(yíng)銷(xiāo)成熟員工,進(jìn)行營(yíng)銷(xiāo)將會(huì)成功.現(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分為兩層,進(jìn)行分層抽樣,從中抽出5人,在這5人中任選2人進(jìn)行營(yíng)銷(xiāo)活動(dòng).活動(dòng)中,每位員工若營(yíng)銷(xiāo)成功,將為公司贏得3萬(wàn)元,否則公司將損失1萬(wàn)元,試問(wèn)在此次比賽中公司收入多少萬(wàn)元的可能性最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點(diǎn),將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點(diǎn),則在△ADE翻轉(zhuǎn)過(guò)程中,下列說(shuō)法錯(cuò)誤的是( )
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個(gè)位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長(zhǎng)之比為定值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2﹣2x<0},B={x|y=log2(x﹣1)},則A∪B=( )
A.(0,+∞)
B.(1,2)
C.(2,+∞)
D.(﹣∞,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P是曲線C1:(x﹣2)2+y2=4上的動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,以極點(diǎn)O為中心,將點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)Q,設(shè)點(diǎn)Q的軌跡方程為曲線C2 .
(1)求曲線C1 , C2的極坐標(biāo)方程;
(2)射線θ= 與曲線C1 , C2分別交于A,B兩點(diǎn),定點(diǎn)M(2,0),求△MAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= ﹣ax,e為自然對(duì)數(shù)的底數(shù) (Ⅰ)若函數(shù)f(x)的圖象在點(diǎn)(e2 , f(e2))處的切線方程為 3x+4y﹣e2=0,求實(shí)數(shù)a,b的值;
(Ⅱ)當(dāng)b=1時(shí),若存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}與{bn}滿(mǎn)足an=2bn+3(n∈N*),若{bn}的前n項(xiàng)和為Sn= (3n﹣1)且λan>bn+36(n﹣3)+3λ對(duì)一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com