(2007•懷化)如圖,是用形狀、大小完全相同的等腰梯形密鋪成的圖案,則這個圖案中的等腰梯形的底角(指鈍角)是    度.
【答案】分析:仔細觀察可發(fā)現(xiàn)等腰梯形的三個鈍角的和是360°,從而可求得其鈍角的度數(shù).
解答:解:根據(jù)條件可以知道等腰梯形的三個鈍角的和是360°,因而這個圖案中等腰梯形的底角是360°÷3=120°.
點評:正確觀察圖形,得到梯形角的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2007•懷化)如圖,在平面直角坐標系xoy中,M是x軸正半軸上一點,⊙M與x軸的正半軸交于A,B兩點,A在B的左側(cè),且OA,OB的長是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點,N在第四象限.
(1)求⊙M的直徑;
(2)求直線ON的解析式;
(3)在x軸上是否存在一點T,使△OTN是等腰三角形?若存在請在圖2中標出T點所在位置,并畫出△OTN(要求尺規(guī)作圖,保留作圖痕跡,不寫作法,不證明,不求T的坐標);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(15)(解析版) 題型:解答題

(2007•懷化)如圖,在平面直角坐標系xoy中,M是x軸正半軸上一點,⊙M與x軸的正半軸交于A,B兩點,A在B的左側(cè),且OA,OB的長是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點,N在第四象限.
(1)求⊙M的直徑;
(2)求直線ON的解析式;
(3)在x軸上是否存在一點T,使△OTN是等腰三角形?若存在請在圖2中標出T點所在位置,并畫出△OTN(要求尺規(guī)作圖,保留作圖痕跡,不寫作法,不證明,不求T的坐標);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2007•懷化)如圖,在平面直角坐標系xoy中,M是x軸正半軸上一點,⊙M與x軸的正半軸交于A,B兩點,A在B的左側(cè),且OA,OB的長是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點,N在第四象限.
(1)求⊙M的直徑;
(2)求直線ON的解析式;
(3)在x軸上是否存在一點T,使△OTN是等腰三角形?若存在請在圖2中標出T點所在位置,并畫出△OTN(要求尺規(guī)作圖,保留作圖痕跡,不寫作法,不證明,不求T的坐標);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2007•懷化)如圖,在平面直角坐標系xoy中,M是x軸正半軸上一點,⊙M與x軸的正半軸交于A,B兩點,A在B的左側(cè),且OA,OB的長是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點,N在第四象限.
(1)求⊙M的直徑;
(2)求直線ON的解析式;
(3)在x軸上是否存在一點T,使△OTN是等腰三角形?若存在請在圖2中標出T點所在位置,并畫出△OTN(要求尺規(guī)作圖,保留作圖痕跡,不寫作法,不證明,不求T的坐標);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖南省懷化市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•懷化)如圖,在平面直角坐標系xoy中,M是x軸正半軸上一點,⊙M與x軸的正半軸交于A,B兩點,A在B的左側(cè),且OA,OB的長是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點,N在第四象限.
(1)求⊙M的直徑;
(2)求直線ON的解析式;
(3)在x軸上是否存在一點T,使△OTN是等腰三角形?若存在請在圖2中標出T點所在位置,并畫出△OTN(要求尺規(guī)作圖,保留作圖痕跡,不寫作法,不證明,不求T的坐標);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案