張伯伯利用現(xiàn)有的一面墻(足夠長(zhǎng))和60米長(zhǎng)的籬笆,把墻外的空地圍成四個(gè)相連且面積相等的矩形養(yǎng)兔場(chǎng)(如圖),設(shè)每個(gè)小矩形一邊的長(zhǎng)為x米,設(shè)四個(gè)小矩形的總面積為y平方米,
(1)請(qǐng)直接寫(xiě)出y與x的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(2)當(dāng)x為何值時(shí),y有最大值,求出最大值.

解:(1)設(shè)每個(gè)小矩形一邊的長(zhǎng)為x米,設(shè)四個(gè)小矩形的總面積為y平方米,
則y=(60-5x)x=-5x2+60x;

(2)∵y=-5x2+60x=-5(x2-12x)=-5(x-6) 2+180,
∴當(dāng)x=6時(shí),y最大=180.
答:當(dāng)x為何值6m時(shí),y有最大值,最大值為180平方米.
分析:(1)根據(jù)籬笆的總長(zhǎng)60m,一邊長(zhǎng)為x米,4個(gè)小矩形長(zhǎng)、寬都相等的條件,求y與x之間的函數(shù)關(guān)系式;
(2)根據(jù)二次項(xiàng)系數(shù)為負(fù)數(shù),判斷二次函數(shù)S有最大值,根據(jù)配方法求最大值及S取最大值時(shí),x的取值.
點(diǎn)評(píng):本題考查了二次函數(shù)的應(yīng)用.關(guān)鍵是根據(jù)矩形面積公式列出函數(shù)式,利用二次函數(shù)的性質(zhì)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

張伯伯利用現(xiàn)有的一面墻(足夠長(zhǎng))和60米長(zhǎng)的籬笆,把墻外的空地圍成四個(gè)相連且面積相等的矩形養(yǎng)兔場(chǎng)(如圖),設(shè)每個(gè)小矩形一邊的長(zhǎng)為x米,設(shè)四個(gè)小矩形的總面積為y平方米,
(1)請(qǐng)直接寫(xiě)出y與x的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(2)當(dāng)x為何值時(shí),y有最大值,求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案