如圖,直線a、b被直線c所截(即直線c與直線a、b都相交),且a∥b,若∠1=118°,則∠2的度數(shù)=  度.

考點(diǎn):平行線的性質(zhì);對(duì)頂角、鄰補(bǔ)角。

專題:計(jì)算題。

分析:本題主要利用兩直線平行,同位角相等;以及鄰補(bǔ)角的定義進(jìn)行做題.

解答:解:∵a∥b,

∴∠1=∠3=118°,

∵∠3與∠2互為鄰補(bǔ)角,

∴∠2=62°.

點(diǎn)評(píng):本題重點(diǎn)考查了平行線的性質(zhì)及鄰補(bǔ)角的定義,是一道較為簡(jiǎn)單的題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,是一個(gè)掛在墻壁上時(shí)鐘的示意圖.O是其秒針的轉(zhuǎn)動(dòng)中心,M是秒針的另一端,OM=8cm,l是過(guò)點(diǎn)O的鉛直直線.現(xiàn)有一只螞蟻P在秒針OM上爬行,螞蟻P到點(diǎn)O的距離與M到l的距離始終相等.則1分鐘的時(shí)間內(nèi),螞蟻P被秒針OM攜帶的過(guò)程中移動(dòng)的路程(非螞蟻在秒針上爬行的路程)是
16π
16π
 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直AB、CD被直線EF所截,GE平分∠AEF,GF平分∠EFC,∠1+∠2=90°,AB∥CD嗎?為什么?
解:因?yàn)镚E平分∠AEF,GF平分∠EFC(已知),
所以∠AEF=2∠
1
1
,
∠EFC=2∠
2
2
,
所以∠AEF+∠EFC=
2(∠1+∠2)(
2(∠1+∠2)(
( 等式性質(zhì) ),
因?yàn)椤?+∠2=90°(已知),
所以∠AEF+∠EFC=
180°
180°
°
所以AB∥CD
同旁內(nèi)角互補(bǔ),兩直線平行
同旁內(nèi)角互補(bǔ),兩直線平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,已知直AB、CD被直線EF所截,GE平分∠AEF,GF平分∠EFC,∠1+∠2=90°,AB∥CD嗎?為什么?
解:因?yàn)镚E平分∠AEF,GF平分∠EFC(已知),
所以∠AEF=2∠________,
∠EFC=2∠________,
所以∠AEF+∠EFC=________( 等式性質(zhì) ),
因?yàn)椤?+∠2=90°(已知),
所以∠AEF+∠EFC=________°
所以AB∥CD________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直AB、CD被直線EF所截,GE平分∠AEF,GF平分∠EFC,∠1+∠2=90°,ABCD嗎?為
精英家教網(wǎng)
什么?
因?yàn)镚E平分∠AEF,GF平分∠EFC(已知),
所以∠AEF=2∠______,
∠EFC=2∠______,
所以∠AEF+∠EFC=______( 等式性質(zhì) ),
因?yàn)椤?+∠2=90°(已知),
所以∠AEF+∠EFC=______°
所以ABCD______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年理科實(shí)驗(yàn)班自主招生考試數(shù)學(xué)試卷(一)(解析版) 題型:填空題

如圖,是一個(gè)掛在墻壁上時(shí)鐘的示意圖.O是其秒針的轉(zhuǎn)動(dòng)中心,M是秒針的另一端,OM=8cm,l是過(guò)點(diǎn)O的鉛直直線.現(xiàn)有一只螞蟻P在秒針OM上爬行,螞蟻P到點(diǎn)O的距離與M到l的距離始終相等.則1分鐘的時(shí)間內(nèi),螞蟻P被秒針OM攜帶的過(guò)程中移動(dòng)的路程(非螞蟻在秒針上爬行的路程)是     cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案