如圖l,在四邊形A8CD中,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長,分別與BA、CD的延長線交于點(diǎn)M、N,則∠BME=∠CNE(不需證明).

    (溫馨提示:在圖1中,連結(jié)BD,取BD的中點(diǎn)H,連結(jié)HE、HF,根據(jù)三角形中位線定理,可證得HE=HF,從而∠HFE=∠HEF,再利用平行線的性質(zhì),可證得∠BME=∠CNE.)

    問題一:如圖2,在四邊形ADBC中,AB與CD相交于點(diǎn)O,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF,分別交DC、AB于點(diǎn)M、N,判斷△OMN的形狀,請直接寫出結(jié)論.

    問題二:如圖3,在△ABC中,AC>AB,D點(diǎn)在AC上,AB=CD,E、F分別是BC、AD的中點(diǎn),連結(jié)EF并延長,與BA的延長線交于點(diǎn)G,  若∠EFC=600,連結(jié)GD,判斷△AGD的形狀并證明.

(1)       等腰三角形

(2)       直角三角線  

證明:如圖連接BD,取BD中點(diǎn)H,連接HF,HE

∴ △AGF是等邊三角形.

∴ AF=FD.

∴ GF=FD.

∴ ∠FGI=∠FDG=300

∴ ∠AGD=900

即△AGD是直角三角形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB經(jīng)過點(diǎn)C(1,2),與x軸、y軸分別交于A點(diǎn)、B點(diǎn),CD⊥x軸于D,CE⊥y軸于E,CF與x軸交于F.
(1)當(dāng)直線AB繞點(diǎn)C旋轉(zhuǎn)到使△ACD≌△CBE時,求直線A8的解析式;
(2)若S四邊形ODCE=S△CFD,當(dāng)直線AB繞點(diǎn)C旋轉(zhuǎn)到使FC⊥AB時,求BC的長;
(3)在(2)成立的情況下,將△FOG沿y軸對折得到△F′O′G′(F、0、G的對應(yīng)點(diǎn)分別為F′、O′、G′),把△F′O′G′沿x軸正方向平移到使得點(diǎn)F′與點(diǎn)A重合,設(shè)在平移過程中△F′O′G′與四邊形CDOE重疊的面積為y,OO′的長為x,求y與x的函數(shù)關(guān)系式及自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線AB經(jīng)過點(diǎn)C(1,2),與x軸、y軸分別交于A點(diǎn)、B點(diǎn),CD⊥x軸于D,CE⊥y軸于E,CF與x軸交于F.
(1)當(dāng)直線AB繞點(diǎn)C旋轉(zhuǎn)到使△ACD≌△CBE時,求直線A8的解析式;
(2)若S四邊形ODCE=S△CFD,當(dāng)直線AB繞點(diǎn)C旋轉(zhuǎn)到使FC⊥AB時,求BC的長;
(3)在(2)成立的情況下,將△FOG沿y軸對折得到△F′O′G′(F、0、G的對應(yīng)點(diǎn)分別為F′、O′、G′),把△F′O′G′沿x軸正方向平移到使得點(diǎn)F′與點(diǎn)A重合,設(shè)在平移過程中△F′O′G′與四邊形CDOE重疊的面積為y,OO′的長為x,求y與x的函數(shù)關(guān)系式及自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005-2006學(xué)年北京市海淀區(qū)上地實(shí)驗(yàn)中學(xué)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線AB經(jīng)過點(diǎn)C(1,2),與x軸、y軸分別交于A點(diǎn)、B點(diǎn),CD⊥x軸于D,CE⊥y軸于E,CF與x軸交于F.
(1)當(dāng)直線AB繞點(diǎn)C旋轉(zhuǎn)到使△ACD≌△CBE時,求直線A8的解析式;
(2)若S四邊形ODCE=S△CFD,當(dāng)直線AB繞點(diǎn)C旋轉(zhuǎn)到使FC⊥AB時,求BC的長;
(3)在(2)成立的情況下,將△FOG沿y軸對折得到△F′O′G′(F、0、G的對應(yīng)點(diǎn)分別為F′、O′、G′),把△F′O′G′沿x軸正方向平移到使得點(diǎn)F′與點(diǎn)A重合,設(shè)在平移過程中△F′O′G′與四邊形CDOE重疊的面積為y,OO′的長為x,求y與x的函數(shù)關(guān)系式及自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005-2006學(xué)年北京市海淀區(qū)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線AB經(jīng)過點(diǎn)C(1,2),與x軸、y軸分別交于A點(diǎn)、B點(diǎn),CD⊥x軸于D,CE⊥y軸于E,CF與x軸交于F.
(1)當(dāng)直線AB繞點(diǎn)C旋轉(zhuǎn)到使△ACD≌△CBE時,求直線A8的解析式;
(2)若S四邊形ODCE=S△CFD,當(dāng)直線AB繞點(diǎn)C旋轉(zhuǎn)到使FC⊥AB時,求BC的長;
(3)在(2)成立的情況下,將△FOG沿y軸對折得到△F′O′G′(F、0、G的對應(yīng)點(diǎn)分別為F′、O′、G′),把△F′O′G′沿x軸正方向平移到使得點(diǎn)F′與點(diǎn)A重合,設(shè)在平移過程中△F′O′G′與四邊形CDOE重疊的面積為y,OO′的長為x,求y與x的函數(shù)關(guān)系式及自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案