如圖,在Rt△ABC中,AB=CB,BO⊥AC于點(diǎn)O,把△ABC折疊,使AB落在AC上,點(diǎn)B與AC上的點(diǎn)E重合,展開后,折痕AD交BO于點(diǎn)F,連接DE、EF.下列結(jié)論:

①tan∠ADB=2;②圖中有4對全等三角形;③若將△DEF沿EF折疊,則點(diǎn)D不一定落在AC上;④BD=BF;⑤S四邊形DFOE=S△AOF,

上述結(jié)論中錯誤的個數(shù)是


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
B
分析:根據(jù)折疊的知識,銳角正切值的定義,全等三角形的判定,面積的計算判斷所給選項是否正確即可.
解答:解:①由折疊可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①錯誤;
②圖中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折疊可知)
∵OB⊥AC,∴∠AOB=∠COB=90°,
在Rt△AOB和Rt△COB中,

∴Rt△AOB≌Rt△COB(HL),
則全等三角形共有4對,故②正確;
③∵AB=CB,BO⊥AC,把△ABC折疊,
∴∠ABO=∠CBO=45°,∠FBD=∠DEF,
∴∠AEF=∠DEF=45°,∴將△DEF沿EF折疊,可得點(diǎn)D一定在AC上,故③錯誤;
④∵OB⊥AC,且AB=CB,
∴BO為∠ABC的平分線,即∠ABO=∠OBC=45°,
由折疊可知,AD是∠BAC的平分線,即∠BAF=22.5°,
又∵∠BFD為三角形ABF的外角,
∴∠BFD=∠ABO+∠BAF=67.5°,
易得∠BDF=180°-45°-67.5°=67.5°,
∴∠BFD=∠BDF,
∴BD=BF,故④正確;
⑤連接CF,∵△AOF和△COF等底同高,
∴S△AOF=S△COF,
∵∠AEF=∠ACD=45°,
∴EF∥CD,
∴S△EFD=S△EFC
∴S四邊形DFOE=S△COF,
∴S四邊形DFOE=S△AOF,
故⑤正確;
故錯誤的有2個.
故選:B.
點(diǎn)評:此題考查了由折疊得到的相關(guān)問題;注意由對稱也可得到一對三角形全等;用到的知識點(diǎn)為:三角形的中線把三角形分成面積相等的2部分;兩條平行線間的距離相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點(diǎn)D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動,到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動,在折線DE-EB上以1cm/s的速度運(yùn)動.當(dāng)點(diǎn)P與點(diǎn)A不重合時,過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動時間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案