【題目】甲、乙兩運動員的射擊成績(靶心為10環(huán))統(tǒng)計如下表(不完全):

次數(shù)
運動員

1

2

3

4

5

10

8

9

10

8

10

9

9

a

b

某同學計算出了甲的成績平均數(shù)是9,方差是
S2= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,請作答:

(1)在圖中用折線統(tǒng)計圖將甲運動員的成績表示出來;
(2)若甲、乙射擊成績平均數(shù)都一樣,則a+b=;
(3)在(2)的條件下,當甲比乙的成績較穩(wěn)定時,請列舉出a、b的所有可能取值,并說明理由.

【答案】
(1)

解:如圖所示:


(2)17
(3)

解:∵甲比乙的成績較穩(wěn)定,

∴S2<S2,即 [(10﹣9)2+(9﹣9)2+(9﹣9)2+(a﹣9)2+(b﹣9)2]<0.8,

∵a+b=17,

∴b=17﹣a,

代入上式整理可得:a2﹣17a+71<0,

解得: <a< ,

∵a、b均為整數(shù),

∴a=8時,b=9;a=9時,b=8.


【解析】(2)由題意知 =9,
∴a+b=17,
所以答案是:17;
【考點精析】本題主要考查了折線統(tǒng)計圖的相關知識點,需要掌握能清楚地反映事物的變化情況,但是不能清楚地表示出在總體中所占的百分比才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的不等式 x﹣1.
(1)當m=1時,求該不等式的解集;
(2)m取何值時,該不等式有解,并求出解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,斜邊AB=9,D為AB的中點,F(xiàn)為CD上一點,且CF= CD,過點B作BE∥DC交AF的延長線于點E,則BE的長為(
A.6
B.4
C.7
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班為滿足同學們課外活動的需求,要求購排球和足球若干個.已知足球的單價比排球的單價多30元,用500元購得的排球數(shù)量與用800元購得的足球數(shù)量相等.
(1)排球和足球的單價各是多少元?
(2)若恰好用去1200元,有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.
(i)二次項系數(shù)2=1×2;
(ii)常數(shù)項﹣3=﹣1×3=1×(﹣3),驗算:“交叉相乘之和”;

1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5
(iii)發(fā)現(xiàn)第③個“交叉相乘之和”的結果1×(﹣3)+2×1=﹣1,等于一次項系數(shù)﹣1.
即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,則2x2﹣x﹣3=(x+1)(2x﹣3).
像這樣,通過十字交叉線幫助,把二次三項式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分別繞直線AB和BC旋轉一周,所得幾何體的地面圓的周長分別記作l1 , l2 , 側面積分別記作S1 , S2 , 則( )

A.l1:l2=1:2,S1:S2=1:2
B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4
D.l1:l2=1:4,S1:S2=1:4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點G在對角線BD上(不與點B,D重合),GE⊥DC于點E,GF⊥BC于點F,連結AG.

(1)寫出線段AG,GE,GF長度之間的數(shù)量關系,并說明理由;
(2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知Rt△ABC,∠C=90°,AC=3,BC=4.分別以點A、B為圓心畫圓.如果點C在⊙A內,點B在⊙A外,且⊙B與⊙A內切,那么⊙B的半徑長r的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數(shù)y= 的圖象在第一象限的交點為C,CD⊥x軸,垂足為D,若OB=3,OD=6,△AOB的面積為3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)直接寫出當x>0時,kx+b﹣ <0的解集.

查看答案和解析>>

同步練習冊答案