如圖甲,四邊形OABC的邊OA、OC分別在x軸、y軸的正半軸上,頂點在B點的拋物線交x軸于點A、D,交y軸于點E,連接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).
(1)求拋物線的解析式及頂點B的坐標;
(2)求證:CB是△ABE外接圓的切線;
(3)試探究坐標軸上是否存在一點P,使以D、E、P為頂點的三角形與△ABE相似,若存在,直接寫出點P的坐標;若不存在,請說明理由;
(4)設(shè)△AOE沿x軸正方向平移t個單位長度(0<t≤3)時,△AOE與△ABE重疊部分的面積為s,求s與t之間的函數(shù)關(guān)系式,并指出t的取值范圍.
(1)y=a(x﹣3)(x+1);點B(1,4)
(2)見解析
(3)見解析
(4)s=
解析(1)由題意,設(shè)拋物線解析式為y=a(x﹣3)(x+1).
將E(0,3)代入上式,解得:a=﹣1.
∴y=﹣x2+2x+3.
則點B(1,4).
(2)證明:如圖1,過點B作BM⊥y于點M,則M(0,4).
在Rt△AOE中,OA=OE=3,
∴∠1=∠2=45°,AE==3.
在Rt△EMB中,EM=OM﹣OE=1=BM,
∴∠MEB=∠MBE=45°,BE==.
∴∠BEA=180°﹣∠1﹣∠MEB=90°.
∴AB是△ABE外接圓的直徑.
在Rt△ABE中,tan∠BAE===tan∠CBE,
∴∠BAE=∠CBE.
在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°.
∴∠CBA=90°,即CB⊥AB.
∴CB是△ABE外接圓的切線.
(3)解:Rt△ABE中,∠AEB=90°,tan∠BAE=,sin∠BAE=,cos∠BAE=;
若以D、E、P為頂點的三角形與△ABE相似,則△DEP必為直角三角形;
①DE為斜邊時,P1在x軸上,此時P1與O重合;
由D(﹣1,0)、E(0,3),得OD=1、OE=3,即tan∠DEO==tan∠BAE,即∠DEO=∠BAE
滿足△DEO∽△BAE的條件,因此 O點是符合條件的P1點,坐標為(0,0).
②DE為短直角邊時,P2在x軸上;
若以D、E、P為頂點的三角形與△ABE相似,則∠DEP2=∠AEB=90°,sin∠DP2E=sin∠BAE=;
而DE==,則DP2=DE÷sin∠DP2E=÷=10,OP2=DP2﹣OD=9
即:P2(9,0);
③DE為長直角邊時,點P3在y軸上;
若以D、E、P為頂點的三角形與△ABE相似,則∠EDP3=∠AEB=90°,cos∠DEP3=cos∠BAE=;
則EP3=DE÷cos∠DEP3=÷=,OP3=EP3﹣OE=;
綜上,得:P1(0,0),P2(9,0),P3(0,﹣).
(4)解:設(shè)直線AB的解析式為y=kx+b.
將A(3,0),B(1,4)代入,得解得
∴y=﹣2x+6.
過點E作射線EF∥x軸交AB于點F,當(dāng)y=3時,得x=,∴F(,3).
情況一:如圖2,當(dāng)0<t≤時,設(shè)△AOE平移到△DNM的位置,MD交AB于點H,MN交AE于點G.
則ON=AD=t,過點H作LK⊥x軸于點K,交EF于點L.
由△AHD∽△FHM,得,即.
解得HK=2t.
∴S陰=S△MND﹣S△GNA﹣S△HAD=×3×3﹣(3﹣t)2﹣t•2t=﹣t2+3t.
情況二:如圖3,當(dāng)<t≤3時,設(shè)△AOE平移到△PQR的位置,PQ交AB于點I,交AE于點V.
由△IQA∽△IPF,得.即,
解得IQ=2(3﹣t).
∴S陰=S△IQA﹣S△VQA=×(3﹣t)×2(3﹣t)﹣(3﹣t)2=(3﹣t)2=t2﹣3t+.
綜上所述:s=.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第25章《圖形的變換》中考題集(08):25.2 旋轉(zhuǎn)變換(解析版) 題型:選擇題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第26章《圓》中考題集(02):26.1 旋轉(zhuǎn)(解析版) 題型:選擇題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:第23章《旋轉(zhuǎn)》中考題集(02):23.1 圖形的旋轉(zhuǎn)(解析版) 題型:選擇題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年九年級數(shù)學(xué)上冊期中綜合水平測試卷A卷(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com