(2012•中山二模)已知關(guān)于x的一元二次方程 x2+3x-m=0有實數(shù)根.
(1)求m的取值范圍
(2)若兩實數(shù)根分別為x1和x2,且
x
2
1
+
x
2
2
=11
,求m的值.
分析:(1)由關(guān)于x的一元二次方程 x2+3x-m=0有實數(shù)根,即可得判別式△≥0,即可得不等式32+4m≥0,繼而求得答案;
(2)由根與系數(shù)的關(guān)系,即可得x1+x2=-3、x1x2=-m,又由x12+x22=(x1+x22-2x1•x2=11,即可得方程:(-3)2+2m=11,解此方程即可求得答案.
解答:解:(1)∵關(guān)于x的一元二次方程 x2+3x-m=0有實數(shù)根,
∴△=b2-4ac=32+4m≥0,
解得:m≥-
9
4
;

(2)∵x1+x2=-3、x1x2=-m,
∴x12+x22=(x1+x22-2x1•x2=11,
∴(-3)2+2m=11,
解得:m=1.
點評:此題考查了一元二次方程根的判別式與根與系數(shù)的關(guān)系.此題難度不大,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時,方程有兩個不相等的兩個實數(shù)根;②當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根;③當(dāng)△<0時,方程無實數(shù)根.x1,x2是方程x2+px+q=0的兩根時,x1+x2=-p,x1x2=q.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山二模)如圖所示的幾何體的正視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山二模)解不等式組
2(x+5)≥6
3-2x>1+2x
并把它的解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•中山二模)已知:如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB邊上一點O為圓心,過A、D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省中考模擬數(shù)學(xué)試卷(五)(解析版) 題型:解答題

(2012•中山二模)如圖1,在正方形ABCD中,E、F分別是BC,CD上的點,且∠EAF=45度.則有結(jié)論EF=BE+FD成立;
(1)如圖2,在四邊形ABCD中,AB=AD,∠B=∠D=90°,E、F分別是BC,CD上的點,且∠EAF是∠BAD的一半,那么結(jié)論EF=BE+FD是否仍然成立?若成立,請證明;不成立,請說明理由.
(2)若將(1)中的條件改為:在四邊形ABCD中,AB=AD,∠B+∠D=180°,延長BC到點E,延長CD到點F,使得∠EAF仍然是∠BAD的一半,則結(jié)論EF=BE+FD是否仍然成立?若成立,請證明;不成立,請寫出它們的數(shù)量關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊答案