【題目】解答下列各題:
(1)解不等式﹣x+1<7x﹣3;
(2)解不等式;
(3)解不等式,并把它的解集表示在數(shù)軸上.
(4)已知關于x的不等式組,恰好有兩個整數(shù)解,試確定實數(shù)a的取值范圍.
【答案】(1); (2)x≤﹣2;(3)x≤﹣1;(4)﹣<a≤0.
【解析】
(1)移項、合并同類項、系數(shù)化為1可得;
(2)去分母、去括號、移項、合并同類項、系數(shù)化為1可得;
(3)去分母、去括號、移項、合并同類項、系數(shù)化為1可得;
(4)首先解不等式組求得解集,然后根據(jù)不等式組只有兩個整數(shù)解,確定整數(shù)解,則可以得到一個關于a的不等式組求得a的范圍.
解:(1)﹣x﹣7x<﹣3﹣1,
﹣8x<﹣4,
x>;
(2)2(1﹣2x)≥4﹣3x,
2﹣4x≥4﹣3x,
﹣4x+3x≥4﹣2,
﹣x≥2,
x≤﹣2;
(3)3(x+1)﹣2(x﹣2)≤6,
3x+3﹣2x+4≤6,
3x﹣2x≤6﹣3﹣4,
x≤﹣1,
將解集表示在數(shù)軸上如下:
(4)解不等式3+4(x+1)>1,得:x>﹣,
解不等式a﹣>﹣1,得:x<2a+1,
∵不等式組恰有2個整數(shù)解,
∴0<2a+1≤1,
解得:﹣<a≤0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于O,OE是∠AOC的平分線,OF⊥CD,OG⊥OE,∠BOD=52°.
(1)求∠AOC,∠AOF的度數(shù);
(2)求∠EOF與∠BOG是否相等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC>∠ADC,且∠BAD 的平分線 AE 與∠BCD 的平分線 CE 交于點 E,則∠AEC與∠ADC、∠ABC 之間存在的等量關系是( )
A. ∠AEC=∠ABC﹣2∠ADC B. ∠AEC=
C. ∠AEC= ∠ABC﹣∠ADC D. ∠AEC=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角△ABC中,∠A為直角,AB=6,AC=8.點P,Q,R分別在AB,BC,CA邊上同時開始作勻速運動,2秒后三個點同時停止運動,點P由點A出發(fā)以每秒3個單位的速度向點B運動,點Q由點B出發(fā)以每秒5個單位的速度向點C運動,點R由點C出發(fā)以每秒4個單位的速度向點A運動,在運動過程中:
(1)求證:△APR,△BPQ,△CQR的面積相等;
(2)求△PQR面積的最小值;
(3)用t(秒)(0≤t≤2)表示運動時間,是否存在t,使∠PQR=90°?若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D、E分別在AB、AC上,且CE=BC,連接CD,將線段CD繞點C按順時針方向旋轉90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知動點P以每秒2㎝的速度沿圖甲的邊框按從的路徑移動,相應的△ABP的面積S關于時間t的函數(shù)圖象如圖乙.若AB=6,試回答下列問題:
(1)圖甲中的BC長是多少?
(2)圖乙中的a是多少?
(3)圖甲中的圖形面積的多少?
(4)圖乙的b是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,E是直線AB,CD內部一點,AB∥CD,連接EA,ED.
(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED= °
②猜想圖①中∠AED,∠EAB,∠EDC的關系,并用兩種不同的方法證明你的結論.
(2)拓展應用:
如圖②,射線FE與l1,l2交于分別交于點E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關系(任寫出兩種,可直接寫答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行超價收費,為更好地決策,自來水公司的隨機抽取了部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計圖,(每組數(shù)據(jù)包括在右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解答下列問題:
(1)此次抽樣調查的樣本容量是 .
(2)補全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù).
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,點P為BC上任意一點,連接PA,以PA,PC為鄰邊作平行四邊形PAQC,連接PQ,則PQ的最小值為( 。
A. B. C. D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com