如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠D=30°.
(l)求證:CD是⊙O的切線;
(2)若CD=,求扇形0AC的面積.(結(jié)果保留π)

【答案】分析:(1)要證明CD是⊙O的切線,即證明OC⊥CD.連接OC,由AC=CD,∠D=30°,則∠A=∠D=30°,得到∠COD=60°,所以∠OCD=90°;
(2)由(1)得△OCD是直角三角形,由特殊角的三角函數(shù)求出圓的半徑再代入扇形的面積公式即可求出扇形0AC的面積.
解答:(1)證明:連接OC,
∵AC=CD,且∠D=30°,
∴∠A=∠D=30°,
又∵OA=OC,
∴∠ACO=∠A=30°,
∴∠COD=∠ACO+∠A=60°,
∴∠OCD=180°-60°-30°=90°,
∴DC是⊙O的切線;

(2)由(1)得△OCD是直角三角形,
∵在Rt△OCD中,CD=3,∠D=30°,
∴OC=CD tan30°=3×=3,
∴S扇形OAC=
點評:本題考查了圓的切線的判定方法和扇形的面積公式.經(jīng)過半徑的外端點與半徑垂直的直線是圓的切線.當已知直線過圓上一點,要證明它是圓的切線,則要連接圓心和這個點,證明這個連線與已知直線垂直即可;當沒告訴直線過圓上一點,要證明它是圓的切線,則要過圓心作直線的垂線,證明垂線段等于圓的半徑.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、如圖所示,在直角坐標系中,矩形OBCD的邊長OB=4,OD=2.
(1)P是OB上一個動點,動點 Q在 PB或其延長線上運動,OP=PQ,作以 PQ為一邊的正方形PQRS,點P從O點開始沿射線OB方向運動,直到點P與點B重合,設(shè)OP=x,正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與x的函數(shù)關(guān)系式;
(2)在(1)中,當x分別取1和3時,y的值分別是多少?
(3)已知直線l:y=ax-a都經(jīng)過一定點A,求經(jīng)過定點A且把矩形OBCD面積平均分成兩部分的直線的關(guān)系式和A點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一張傳說中的“藏寶圖”,圖上除標明了A﹑B﹑C三點的位置以外,并沒有直接標出”寶藏”的位置,但圖上注有尋找“寶藏”的方法:把直角△ABC補成矩形,使矩形的面積是A精英家教網(wǎng)BC的2倍,“寶藏”就在矩形未知的頂點處,那么“寶藏”的位置可能是
 
.(用坐標表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在直角坐標系中,矩形OBCD的邊長OB=4,OD=2,點P是射線OB上一個動點,動點Q在PB或其延長線上運動,OP=PQ,作以PQ為一邊的正方形PQRS,點P從O點開始沿射線OB方向運動,運動速度是1個單位/秒,運動時間為t秒,直到點P與點B重合為止.
(1)設(shè)正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與t的函數(shù)關(guān)系式;
(2)y=2時,求t的值;
(3)當t為何值時,三角形CSR為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)如圖,熱氣球從山頂A豎直上升至點B需25秒,點D在地面上,DC⊥AB,垂足為C,從地面上點D分別仰視A,B兩點,測得∠ADC=20°,∠BDC=60°,若CD=130米.求該熱氣球從山頂A豎直上升至點B的平均速度.(結(jié)果精確到0.1米/秒)
(參考數(shù)據(jù):tan20°≈0.36,tan30°=0.58,tan60°≈1.73,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué) 九年級下冊 北師大課標 題型:044

如圖所示,在小山的東側(cè)A處有一熱氣球沿著與豎直方向夾角為的方向向東飛行,每分鐘飛行28 m,半小時后到達C處,這時氣球上的人發(fā)現(xiàn),在A處的正西方向有一處著火點B,5分鐘后,在D處測得著火點日的俯角是,求熱氣球升空點A與著火點B的距離.(結(jié)果精確到l m)

查看答案和解析>>

同步練習(xí)冊答案