【題目】如圖,為線(xiàn)段上一動(dòng)點(diǎn)(不與點(diǎn),重合),在同側(cè)分別作等邊和等邊,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn),連接.下列五個(gè)結(jié)論:①;②;③;④DE=DP;⑤.其中正確結(jié)論的個(gè)數(shù)是( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
【答案】C
【解析】
①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內(nèi)錯(cuò)角相等,兩直線(xiàn)平行,可知②正確;
③根據(jù)②△CQB≌△CPA(ASA),可知③正確;
④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯(cuò)誤;
⑤由BC∥DE,得到∠CBE=∠BED,由∠CBE=∠DAE,得到∠AOB=∠OAE+∠AEO=60°.
解:∵等邊△ABC和等邊△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
在△ACD與△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE, 故①正確,
∵△ACD≌△BCE,
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ為等邊三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE, 故②正確,
∵△CQB≌△CPA,
∴AP=BQ, 故③正確,
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④錯(cuò)誤;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AOB=∠OAE+∠AEO=60°,故⑤正確;
綜上所述,正確的有4個(gè),
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,都為等腰直角三角形,三點(diǎn)在同一直線(xiàn)上,連接.
(1)若,求的周長(zhǎng);
(2)如圖,點(diǎn)為的中點(diǎn),連接并延長(zhǎng)至,使得,連接.
①求證:;
②探索與的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)I是△ABC的內(nèi)心,AI的延長(zhǎng)線(xiàn)和△ABC的外接圓相交于點(diǎn)D,與BC相交于點(diǎn)E.
(1)求證:DI=DB;
(2)若AE=6cm,ED=4cm,求線(xiàn)段DI的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2﹣m2(m>0且為常數(shù))的圖象與x軸交于點(diǎn)A、B(A在B左側(cè)),與y軸交于C.
(1)求A,B,C三點(diǎn)的坐標(biāo)(用含m的式子表示);
(2)若∠ACB=90°,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線(xiàn)AB:交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B.直線(xiàn)x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線(xiàn)x=1上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)P(1,n).
(1)求直線(xiàn)AB的解析式和點(diǎn)B的坐標(biāo);
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接“均衡教育大檢查”,縣委縣府對(duì)通往某偏遠(yuǎn)學(xué)校的一段全長(zhǎng)為1200 米的道路進(jìn)行了改造,鋪設(shè)草油路面.鋪設(shè)400 米后,為了盡快完成道路改造,后來(lái)每天的工作效率比原計(jì)劃提高25%,結(jié)果共用13天完成道路改造任務(wù).
(1)求原計(jì)劃每天鋪設(shè)路面多少米;
(2)若承包商原來(lái)每天支付工人工資為1500元,提高工作效率后每天支付給工人的工資增長(zhǎng)了20%,完成整個(gè)工程后承包商共支付工人工資多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=12,點(diǎn)E為BC的中點(diǎn),以CD為直徑作半圓CFD,點(diǎn)F為半圓的中點(diǎn),連接AF,EF,圖中陰影部分的面積是( 。
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,-2).
(1)求這兩個(gè)函數(shù)的關(guān)系式;
(2)觀察圖象,寫(xiě)出使得y1>y2成立的自變量x的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱(chēng),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于6cm2?
(2)在(1)中,△PQB的面積能否等于8cm2?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com