【題目】某校開設(shè)了“3D”打印、數(shù)學(xué)史、詩歌欣賞、陶藝制作四門校本課程,為了解學(xué)生對這四門校本課程的喜愛情況,對學(xué)生進(jìn)行了隨機問卷調(diào)查(問卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制例圖1、圖2兩幅均不完整的統(tǒng)計圖表.
校本課程 | 頻數(shù) | 頻率 |
A | 36 | 0.45 |
B |
| 0.25 |
C | 16 | b |
D | 8 |
|
合計 | a | 1 |
請您根據(jù)圖表中提供的信息回答下列問題:
(1)統(tǒng)計表中的a= ,b= ;
(2)“D”對應(yīng)扇形的圓心角為 度;
(3)根據(jù)調(diào)查結(jié)果,請您估計該校2000名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門校本課程中隨機選取一門,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一門校本課程的概率.
【答案】(1)80,0.20;(2)36;(3)500(人);(4)
【解析】
(1)根據(jù)題意列出算式,再求出即可;
(2)根據(jù)題意列出算式,再求出即可;
(3)根據(jù)題意列出算式,再求出即可;
(4)先列出表格,再根據(jù)題意列出算式,再求出即可.
(1)a=36÷0.45=80,b=16÷80=0.20.
故答案為:80,0.20;
(2)“D”對應(yīng)扇形的圓心角的度數(shù)為:
8÷80×360°=36°.
故答案為:36;
(3)估計該校2000名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù)為:2000×0.25=500(人);
(4)列表格如下:
共有9種等可能的結(jié)果,其中兩人恰好選中同一門校本課程的結(jié)果有3種,所以兩人恰好選中同一門校本課程的概率為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售甲、乙兩種品牌的A4多功能辦公用紙,購買2包甲品牌和3包乙品牌的A4多功能辦公用紙共需156元;購買3包甲品牌和1包乙品牌的A4多功能辦公用共需122元.
(1)求這兩種品牌的A4多功能辦公用紙每包的單價;
(2)疫情期間,為滿足師生的用紙要求,該商店對這兩種A4多功能辦公用紙展開了促銷活動,具體辦法如下:甲品牌的A4多功能辦公用紙按原價的八折銷售,乙品牌的A4多功能辦公用紙超出5包的部分按原價的七折銷售,設(shè)購買的x包甲品牌的A4多功能辦公用紙需要y1元,購買x包乙品牌的A4多功能辦公用紙需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)需要購買50包A4多功能辦公用紙時,買哪種品牌的A4多功能辦公用紙更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時說:“我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運動,少熬夜.”某社區(qū)為了加強社區(qū)居民對新型冠狀病毒肺炎防護(hù)知識的了解,通過微信群宣傳新型冠狀病毒肺炎的防護(hù)知識,并鼓勵社區(qū)居民在線參與作答《2020年新型冠狀病毒防治全國統(tǒng)一考試(全國卷)》試卷,社區(qū)管理員隨機從甲、乙兩個小區(qū)各抽取20名人員的答卷成績,并對他們的成績(單位:分)進(jìn)行統(tǒng)計、分析,過程如下:
收集數(shù)據(jù)
甲小區(qū):85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小區(qū):80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90
整理數(shù)據(jù)
成績x(分) | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲小區(qū) | 2 | 5 | a | b |
乙小區(qū) | 3 | 7 | 5 | 5 |
分析數(shù)據(jù)
統(tǒng)計量 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲小區(qū) | 85.75 | 87.5 | c |
乙小區(qū) | 83.5 | d | 80 |
應(yīng)用數(shù)據(jù)
(1)填空:a= ,b= ,c= ,d= ;
(2)若甲小區(qū)共有800人參與答卷,請估計甲小區(qū)成績大于90分的人數(shù);
(3)社區(qū)管理員看完統(tǒng)計數(shù)據(jù),認(rèn)為甲小區(qū)對新型冠狀病毒肺炎防護(hù)知識掌握更好,請你寫出社區(qū)管理員的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AC、BD相交于點O,點E是OA的中點,連接BE并延長交AD于點F,S△AEF=4,則下列結(jié)論:①FD=2AF;②S△BCE=36;③S△ABE=16; ④△AEF∽△ACD,其中一定正確的是( 。
A.①②④B.①②③C.②③④D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△沿對折,疊合后的圖形如圖所示.若,,則∠2的度數(shù)為( )
A. 24° B. 35° C. 30° D. 25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線交軸于點(0,0)和點,拋物線交軸于點(0,0)和點,拋物線交軸于點(0,0)和點…按此規(guī)律,拋物線交軸于點(0,0)和點(其中n為正整數(shù)),我們把拋物線稱為系數(shù)為的“關(guān)于原點位似”的拋物線族.
(1)試求出的值;
(2)請用含n的代數(shù)式表示線段的長;
(3)探究下列問題:
①拋物線的頂點縱坐標(biāo)與a、n有何數(shù)量關(guān)系?請說明理由;
②若系數(shù)為a的“關(guān)于原點位似”的拋物線族的各頂點坐標(biāo)記為(T,S),請直接寫出S和T所滿足的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次課題學(xué)習(xí)中活動中,老師提出了如下一個問題:
點P是正方形ABCD內(nèi)的一點,過點P畫直線l分別交正方形的兩邊于點M、N,使點P是線段MN的三等分點,這樣的直線能夠畫幾條?
經(jīng)過思考,甲同學(xué)給出如下畫法:
如圖1,過點P畫PE⊥AB于E,在EB上取點M,使EM=2EA,畫直線MP交AD于N,則直線MN就是符合條件的直線l.
根據(jù)以上信息,解決下列問題:
(1)甲同學(xué)的畫法是否正確?請說明理由.
(2)在圖1中,能否畫出符合題目條件的直線?如果能,請直接在圖1中畫出.
(3)如圖2,A1、C1分別是正方形ABCD的邊AB、CD上的三等分點,且A1C1∥AD.當(dāng)點P在線段A1C1上時,能否畫出符合題目條件的直線?如果能,可以畫出幾條?
(4)如圖3,正方形ABCD邊界上的A1、A2、B1、B2、C1、C2、D1、D2都是所在邊的三等分點.當(dāng)點P在正方形ABCD內(nèi)的不同位置時,試討論,符合題目條件的直線l的條數(shù)的情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,△ABC內(nèi)接于⊙O.點D在⊙O上,AD平分∠CAB交BC于點E,DF是⊙O的切線,交AC的延長線于點F.
(1)求證;DF⊥AF;
(2)若⊙O的半徑是5, AD=8,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度).
(1)請畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于x軸對稱;
(2)將△ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com