(2011•常州)①解分式方程;
②解不等式組
解:①去分母,得2(x﹣2)=3(x+2),
去括號(hào),得2x﹣4=3x+6,
移項(xiàng),得2x﹣3x=4+6,
解得x=﹣10,
檢驗(yàn):當(dāng)x=﹣10時(shí),(x+2)(x﹣2)≠0,
∴原方程的解為x=﹣10;
②不等式①化為x﹣2<6x+18,
解得x>﹣4,
不等式②化為5x﹣5﹣6≥4x+4,
解得x≥15,
∴不等式組的解集為x≥15.解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•常州)在平面直角坐標(biāo)系XOY中,直線l1過點(diǎn)A(1,0)且與y軸平行,直線l2過點(diǎn)B(0,2)且與x軸平行,直線l1與直線l2相交于點(diǎn)P.點(diǎn)E為直線l2上一點(diǎn),反比例函數(shù)(k>0)的圖象過點(diǎn)E與直線l1相交于點(diǎn)F.
(1)若點(diǎn)E與點(diǎn)P重合,求k的值;
(2)連接OE、OF、EF.若k>2,且△OEF的面積為△PEF的面積的2倍,求E點(diǎn)的坐標(biāo);
(3)是否存在點(diǎn)E及y軸上的點(diǎn)M,使得以點(diǎn)M、E、F為頂點(diǎn)的三角形與△PEF全等?若存在,求E點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•常州)如圖,在△ABO中,已知點(diǎn)、B(﹣1,﹣1)、C(0,0),正比例函數(shù)y=﹣x圖象是直線l,直線AC∥x軸交直線l與點(diǎn)C.
(1)C點(diǎn)的坐標(biāo)為。ī3,3) ;
(2)以點(diǎn)O為旋轉(zhuǎn)中心,將△ABO順時(shí)針旋轉(zhuǎn)角α(90°<α<180°),使得點(diǎn)B落在直線l上的對(duì)應(yīng)點(diǎn)為B′,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,得到△A′OB′.
①∠α= 90° ;②畫出△A′OB′.
(3)寫出所有滿足△DOC∽△AOB的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•常州)已知關(guān)于x的一次函數(shù)y=kx+4k﹣2(k≠0).若其圖象經(jīng)過原點(diǎn),則k=,若y隨著x的增大而減小,則k的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省常州市中考數(shù)學(xué)試卷 題型:解答題

(2011•常州)已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個(gè)菱形(如圖2).記AB的長(zhǎng)度為a,BM的長(zhǎng)度為b.
(1)圖形①中∠B= 72 °,圖形②中∠E= 36 °;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風(fēng)箏一號(hào)”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號(hào)”.
①小明僅用“風(fēng)箏一號(hào)”紙片拼成一個(gè)邊長(zhǎng)為b的正十邊形,需要這種紙片 5 張;
②小明若用若干張“風(fēng)箏一號(hào)”紙片和“飛鏢一號(hào)”紙片拼成一個(gè)“大風(fēng)箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請(qǐng)你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省常州市中考數(shù)學(xué)試卷 題型:填空題

(2011?常州)計(jì)算:=;=;=  ;=  

查看答案和解析>>

同步練習(xí)冊(cè)答案