有兩個直角三角形,在△ABC中,∠ACB=90°,AC=3,BC=6,在△DEF中,∠FDE=90°,DE=DF=4。將這兩個直角三角形按圖1所示位置擺放,其中直角邊在同一直線上,且點與點重合。現(xiàn)固定,將以每秒1個單位長度的速度在上向右平移,當點與點重合時運動停止。設平移時間為秒。

(1)當       秒時,邊恰好經過點;當       秒時,運動停止;
(2)在平移過程中,設重疊部分的面積為,請直接寫出的函數(shù)關系式,并寫出的取值范圍;
(3)當停止運動后,如圖2,為線段上一點,若一動點從點出發(fā),先沿方向運動,到達點后再沿斜坡方向運動到達點,若該動點在線段上運動的速度是它在斜坡上運動速度的2倍,試確定斜坡的坡度,使得該動點從點運動到點所用的時間最短。(要求,簡述確定點位置的方法,但不要求證明。)
(1)2,7;(2)當0<t≤2時,,當2<t≤3時,;3<t≤4時,;當4<t<7時,;(3).

試題分析:(1)過E作EH∥AB,交l于H,則AH為AB邊移動的距離,利用△AHE∽△CAB,求出AH的長,即可求出AB的運動時間;當C與F重合時,C點運動的路為CF,即可求出時間t.
(2)利用相似三角形的知識可分時間段求出S與t之間的函數(shù)關系式.
(3)在l的下方作∠DAM=30°,再過點E作EN⊥AM于N,交AD于G,此時運動時間最短,i=.
試題解析:(1)當   2  秒時,邊恰好經過點;當   7  秒時,運動停止;
(2)當0<t≤2時,,當2<t≤3時,;3<t≤4時,;當4<t<7時,;
(3)在l的下方作∠DAM=30°,再過點E作EN⊥AM于N,交AD于G,此時運動時間最短,

∴∠AGN=60°
∴∠EGD=60°

考點: (1)二次函數(shù);(2)坡度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

鄞州區(qū)有一種可食用的野生菌,上市時,外商李經理按市場價格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預測,該野生菌的市場價格將以每天每千克上漲1元;但冷凍存放這批野生菌時每天需要支出各種費用合計310元,而且這類 野生菌在冷庫中最多保存160天,同時,平均每天有3千克的野生菌損壞不能出售.
(1)設天后每千克該野生菌的市場價格為y元,試寫出y與x之間的函數(shù)關系式;
(2)若存放x天后,將這批野生菌一次性出售,設這批野生菌的銷售總額為元,試寫出與x之間的函數(shù)關系式;
(3)李經理將這批野生菌存放多少天后出售可獲得最大利潤元?
(利潤=銷售總額-收購成本-各種費用)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場購進一種單價為40元的籃球,如果以單價50元售出,那么每月可售出500個,根據(jù)銷售經驗,銷售單價每提高1元,銷售量相應減少10個.
(1)設銷售單價提高x元(x為正整數(shù)),寫出每月銷售量y(個)與x(元)之間的函數(shù)關系式;
(2)假設這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數(shù)關系式,并通過配方討論,當銷售單價定為多少元時,每月銷售這種籃球的利潤最大,最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=2(x+1)(x-3)的對稱軸是(     )
A.直線x=-1B.直線x="1" C.直線x=2D.直線x=3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于點B、C,與y軸交于點E,且點B在點C的左側.

(1)若拋物線過點M(-2,-2),求實數(shù)a的值;
(2)在(1)的條件下,解答下列問題:
①求出△BCE的面積;
②在拋物線的對稱軸上找一點P,使CP+EP的值最小,求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點A(x1,0)、B(x2,0),點A在點B的左側.當x=x2-2時,y______0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)的圖象經過點P(-2,4),則該圖象必經過點
A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

拋物線y=-x2可由拋物線y=-(x-2)2+3如何平移得到(    )
A.先向左平移2個單位,再向下平移3個單位
B.先向右平移2個單位,再向下平移3個單位
C.先向左平移2個單位,再向上平移3個單位
D.先向右平移2個單位,再向上平移3個單位

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)的圖像過點(1,0)和(,0),且,現(xiàn)在有5個判斷:(1) (2) (3) (4) (5),請把你認為判斷正確的序號寫出來               

查看答案和解析>>

同步練習冊答案