如圖,已知在△ABC中,∠ACB=90°,∠B=35°,為C為圓心、CA為半徑的圓交AB于D點(diǎn),則弧AD為________度.

70
分析:根據(jù)已知和三角形內(nèi)角和定理即可求得∠ACD的度數(shù),即得到了弧AD的度數(shù).
解答:解:連接CD,
∵∠ACB=90°,∠B=35°
∴∠A=90°-∠B=55°
∵CA=CD
∴∠A=∠CDA=55°
∴∠ACD=180°-2∠A=70°
∴弧AD的度數(shù)是70°
點(diǎn)評:本題利用了直角三角形,三角形內(nèi)角和定理和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線,AB=9cm,AC=7cm,BC=8m,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線,AB=BC,點(diǎn)P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線.
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點(diǎn)P.當(dāng)∠A=70°時(shí),則∠BPC的度數(shù)為
125°
125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說明CD2=AD•BE.

查看答案和解析>>

同步練習(xí)冊答案