如圖,要在底邊BC=160cm,高AD=120cm,的△ABC鐵皮余料上截取一個(gè)矩形EFGH,使點(diǎn)H在AB上,點(diǎn)G在AC上,點(diǎn)E、F在BC上,AD交HG于點(diǎn)M,此時(shí)
AM
AD
=
HG
BC

(1)設(shè)矩形EFGH的長(zhǎng)HG=y,寬HE=x,確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),矩形EFGH的面積S最大;
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個(gè)圓柱形的鐵桶,怎樣圍時(shí),才能使鐵桶的體積最大?請(qǐng)說(shuō)明理由(注:圍鐵桶側(cè)面時(shí),接縫無(wú)重疊,底面另用材料配備)
精英家教網(wǎng)
分析:(1)按題目給出的比例關(guān)系式求解即可;
(2)根據(jù)矩形的面積公式可得出S=xy,根據(jù)(1)得出的關(guān)于x,y的函數(shù)關(guān)系式可用x替換掉y即可得出S與x的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出S的最大值及對(duì)應(yīng)的x的值;
(3)根據(jù)(2)得出的矩形的長(zhǎng)和寬,可用長(zhǎng)方形的長(zhǎng)為底面周長(zhǎng),寬為高來(lái)圍鐵桶,也可用長(zhǎng)方形的寬為底面周長(zhǎng),長(zhǎng)為高來(lái)圍鐵桶.分別計(jì)算出兩種圍法圍出的鐵桶的體積,然后找出體積最大的哪種情況即可.
解答:解:(1)∵
AM
AD
=
HG
BC
,
120-x
120
=
y
160

∴y=-
4
3
x+160(或x=-
3
4
y+120);

(2)∵S=xy,
∴S=-
4
3
x2+160x=-
4
3
(x2-120x)=-
4
3
(x2-120x+3600-3600)
=-
4
3
(x-60)2+4800.
所以當(dāng)x=60cm時(shí),Smax=4800cm2;

(3)圍圓柱形鐵桶有兩種情況:
當(dāng)x=60cm時(shí),y=-
4
3
×60+160=80cm.
第一種情況:以矩形EFGH的寬HE=60cm作鐵桶的高,長(zhǎng)HG=80cm作鐵桶的底面周長(zhǎng).
則底面半徑R=
80
cm,鐵桶體積V1=π•(
80
2•60=
96000
π
(cm3),
第二種情況:以矩形EFGH的長(zhǎng)HG=80cm作鐵桶的高,寬HE=60cm作鐵桶的底面周長(zhǎng),
則底面半徑r=
60
cm,鐵桶體積V2=π•(
60
2•80=
72000
π
(cm3).
因?yàn)閂1>V2
所以矩形EFGH的寬HE=60cm作鐵桶的高,長(zhǎng)HG=80cm作鐵桶的底面周長(zhǎng)圍成的圓柱形鐵桶的體積較大.
點(diǎn)評(píng):本題考查了圖形面積的求法、圓柱的體積公式、二次函數(shù)的應(yīng)用等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:解答題

如圖,要在底邊BC=160cm,高AD=120cm的△ABC鐵皮余料上,截取一個(gè)矩形EFGH,使點(diǎn)H在AB上,點(diǎn)G在AC上,點(diǎn)E、F在BC上,AD交HG于點(diǎn)M,此時(shí)
(1)設(shè)矩形EFGH的長(zhǎng)HG=y,寬HE=x,試確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),矩形EFGH的面積S最大?
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個(gè)圓柱形的鐵桶,怎樣圍時(shí),才能使鐵桶的體積較大?請(qǐng)說(shuō)明理由.(注:圍鐵桶側(cè)面時(shí),    接縫無(wú)重疊,底面另用材料配備)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年《海峽教育報(bào)》初中數(shù)學(xué)綜合練習(xí)(三)(解析版) 題型:解答題

如圖,要在底邊BC=160cm,高AD=120cm,的△ABC鐵皮余料上截取一個(gè)矩形EFGH,使點(diǎn)H在AB上,點(diǎn)G在AC上,點(diǎn)E、F在BC上,AD交HG于點(diǎn)M,此時(shí)
(1)設(shè)矩形EFGH的長(zhǎng)HG=y,寬HE=x,確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),矩形EFGH的面積S最大;
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個(gè)圓柱形的鐵桶,怎樣圍時(shí),才能使鐵桶的體積最大?請(qǐng)說(shuō)明理由(注:圍鐵桶側(cè)面時(shí),接縫無(wú)重疊,底面另用材料配備)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•四川)如圖,要在底邊BC=160cm,高AD=120cm,的△ABC鐵皮余料上截取一個(gè)矩形EFGH,使點(diǎn)H在AB上,點(diǎn)G在AC上,點(diǎn)E、F在BC上,AD交HG于點(diǎn)M,此時(shí)
(1)設(shè)矩形EFGH的長(zhǎng)HG=y,寬HE=x,確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),矩形EFGH的面積S最大;
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個(gè)圓柱形的鐵桶,怎樣圍時(shí),才能使鐵桶的體積最大?請(qǐng)說(shuō)明理由(注:圍鐵桶側(cè)面時(shí),接縫無(wú)重疊,底面另用材料配備)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年四川省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2004•四川)如圖,要在底邊BC=160cm,高AD=120cm,的△ABC鐵皮余料上截取一個(gè)矩形EFGH,使點(diǎn)H在AB上,點(diǎn)G在AC上,點(diǎn)E、F在BC上,AD交HG于點(diǎn)M,此時(shí)
(1)設(shè)矩形EFGH的長(zhǎng)HG=y,寬HE=x,確定y與x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),矩形EFGH的面積S最大;
(3)以面積最大的矩形EFGH為側(cè)面,圍成一個(gè)圓柱形的鐵桶,怎樣圍時(shí),才能使鐵桶的體積最大?請(qǐng)說(shuō)明理由(注:圍鐵桶側(cè)面時(shí),接縫無(wú)重疊,底面另用材料配備)

查看答案和解析>>

同步練習(xí)冊(cè)答案