【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:① 4ac<b2;② 方程ax2+bx+c=0的兩個根分別是x1=-1,x2=3;③ 3a+c>0;④當(dāng) y>0時,x的取值范圍是-1<x<3;⑤ 當(dāng)x<0時,y隨x的增大而增大.其中正確的結(jié)論序號有_____________________.
【答案】①②④⑤
【解析】
利用拋物線與x軸的交點個數(shù)可對①進行判斷;利用拋物線的對稱性得到拋物線與x軸的另一個交點坐標(biāo)為(3,0),則可對②進行判斷;由對稱軸方程得到b=-2a,然后根據(jù)x=-1時函數(shù)值為0可得到3a+c=0,則可對③進行判斷;根據(jù)拋物線在x軸上方所對應(yīng)的自變量的范圍可對④進行判斷;根據(jù)二次函數(shù)的性質(zhì)對⑤進行判斷.
解:∵拋物線與x軸有2個交點,
∴b2-4ac>0,
∴4ac<b2,故①正確;
∵拋物線的對稱軸為直線x=1,
而點(-1,0)關(guān)于直線x=1的對稱點的坐標(biāo)為(3,0),
∴方程ax2+bx+c=0的兩個根是x1=-1,x2=3,故②正確;
∵x==1,即b=-2a,
而x=-1時,y=0,即a-b+c=0,
∴a+2a+c=0,
即3a+c=0,故③錯誤;
∵拋物線與x軸的兩點坐標(biāo)為(-1,0),(3,0),
∴當(dāng)y>0時,x的取值范圍是-1<x<3,故④正確;
∵拋物線的對稱軸為直線x=1,
∴當(dāng)x<1時,y隨x增大而增大,
∴當(dāng)x<0時,y隨x增大而增大,故⑤正確;
所以其中結(jié)論正確有①②⑤,
故答案為:①②④⑤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知 A(4,0)、B(1,3), 過的直線是繞著△OAB的頂點A旋轉(zhuǎn),與y軸相交于點P,探究解決下列問題:
(1)如圖1所示,當(dāng)直線旋轉(zhuǎn)到與邊OB相交時,試用無刻度的直尺和圓規(guī)確定點P的位置,使頂點O、B到直線的距離之和最大,(保留作圖痕跡);
(2)當(dāng)直線旋轉(zhuǎn)到與y軸的負(fù)半軸相交時,使頂點O、B到直線的距離之和最大,請直接寫出點P的坐標(biāo)是 .(可在圖2中分析)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC⊥AC,圓心O在AC上,點M與點C分別是AC與⊙O的交點,點D是MB與⊙O的交點,點P是AD延長線與BC的交點,且ADAO=AMAP.
(1)連接OP,證明:△ADM∽△APO;
(2)證明:PD是⊙O的切線;
(3)若AD=12,AM=MC,求PB和DM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】裝商店銷售臺型和臺型電腦的利潤為元,銷售臺型和臺, 型電腦的利潤為元.
(1)求每臺型電腦和型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共 臺,其中型電腦的進貨量不超過型電腦的倍,購進型電腦臺,這臺電腦的銷售總利潤為元.間該商店購進型服各多少臺.才能使銷售利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年五月,我國南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,鄰近縣市C、D決定調(diào)運物資支援A、B兩市災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市,A市需要的物資比B市需要的物資少100噸.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用分別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.
(1)A、B兩市各需救災(zāi)物資多少噸?
(2)設(shè)C、D兩市的總運費為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.
(1)2014年這種禮盒的進價是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,2×2網(wǎng)格(每個小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個格點.拋物線l的解析式為y=(-1)nx2+bx+c(n為整數(shù)).
(1)n為奇數(shù),且l經(jīng)過點H(0,1)和C(2,1),求b,c的值,并直接寫出哪個格點是該拋物線上的頂點;
(2)n為偶數(shù),且l經(jīng)過點A(1, 0)和B(2,0),通過計算說明點F(0,2)和H(0,1)是否在拋物線上;
(3)若l經(jīng)過這九個格點中的三個,直接寫出滿足這樣條件的拋物線條數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)的圖象和性質(zhì).小奧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象和性質(zhì)進行了探究.下面是小奧的探究過程,請補充完整:
(1)函數(shù)的自變量的取值范圍是_________;
(2)下表是與的幾組對應(yīng)值,則的值為______,的值為______;
… | 1 | 2 | 3 | 4 | 5 | … | ||||||||
… | 2 | … |
(3)如右圖,在平面直角坐標(biāo)系中,描出了以上表中各組對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)進一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點的坐標(biāo)是.結(jié)合函數(shù)圖象,寫出該函數(shù)的其他兩條性質(zhì):①_________,②_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com