精英家教網 > 初中數學 > 題目詳情
如圖所示,△ABC內接于⊙O,AB是⊙O的直徑,點D在⊙O上,連接CD且DC=BC,過C點作AD的垂線交AD延長線于E,
(1)求證:CE是⊙O的切線;
(2)若AB=5,AC=4,求tan∠DCE的值.

【答案】分析:(1)連接OC,OA=OC,則∠OCA=∠OAC,再由已知條件,可得∠ODE=90°;
(2)由CE是⊙O的切線,得∠DCE=∠CAE=∠CAB,從而求得tan∠DCE的值.
解答:(1)證明:連接OC,
∵OA=OC,
∴∠OCA=∠OAC,
∵DC=BC,
=,
∴∠BAC=∠CAD,
∴∠OCA=∠CAD,
∵∠CAD+∠ACE=90°,∠ACE+∠ACO=90°,
∴OC⊥CE,
∴CE是⊙O的切線;

(2)解:∵CE是⊙O的切線,
∴∠DCE=∠CAE,
∵BD=CD,
∴∠CAE=∠CAB,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵AB=5,AC=4,
∴BC=3,
∴tan∠DCE=tan∠BAC==
點評:本題考查了切割線定理和勾股定理,是基礎知識要熟練掌握.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

10、如圖所示.△ABC內接于⊙O,若∠OAB=28°,則∠C的大小是( �。�

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,△ABC內接于⊙O,AB是⊙O的直徑,點D在⊙O上,過點C的切線交AD的延長線于點E,且精英家教網AE⊥CE,連接CD.
(1)求證:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

19、如圖所示,∠ABC內有一點P,在BA、BC邊上各取一點P1、P2,使△PP1P2的周長最小.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,△ABC內接于圓O,AB是直徑,過A作射線AM,若∠MAC=∠ABC.
(1)求證:AM是圓O的切線;
(2)設D是弧AC的中點,過D作DE⊥AB于E,交AC于F.若AE=2,圓O的半徑為5,求cos∠AFE;
(3)設D是弧AC的中點,過D作DE⊥AB于E,交AC于F.連接BD交AC于G,若△DFG的面積為4.5,且DG=3,GC=4,試求△BCG的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)解方程:
1
x+1
+
2
x-1
=
7
x2-1

(2)如圖所示,△ABC內接于⊙O,AD是△ABC的邊BC上的高,AE是⊙O的直徑,連接BE.求 證:△ABE∽△ADC.

查看答案和解析>>

同步練習冊答案