【題目】閱讀下列材料:
我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即=,也就是說(shuō),表示在數(shù)軸上數(shù)與數(shù)0對(duì)應(yīng)的點(diǎn)之間的距離;這個(gè)結(jié)論可以推廣為表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)的點(diǎn)之間的距離;
例1.解方程||=2.因?yàn)樵跀?shù)軸上到原點(diǎn)的距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為,所以方程||=2的解為.
例2.解不等式|-1|>2.在數(shù)軸上找出|-1|=2的解(如圖),因?yàn)樵跀?shù)軸上到1對(duì)應(yīng)的點(diǎn)的距離等于2的點(diǎn)對(duì)應(yīng)的數(shù)為-1或3,所以方程|-1|=2的解為=-1或=3,因此不等式|-1|>2的解集為<-1或>3.
例3.解方程|-1|+|+2|=5.由絕對(duì)值的幾何意義知,該方程就是求在數(shù)軸上到1和-2對(duì)應(yīng)的點(diǎn)的距離之和等于5的點(diǎn)對(duì)應(yīng)的的值.因?yàn)樵跀?shù)軸上1和-2對(duì)應(yīng)的點(diǎn)的距離為3(如圖),滿足方程的對(duì)應(yīng)的點(diǎn)在1的右邊或-2的左邊.若對(duì)應(yīng)的點(diǎn)在1的右邊,可得=2;若對(duì)應(yīng)的點(diǎn)在-2的左邊,可得=-3,因此方程|-1|+|+2|=5的解是=2或=-3.
參考閱讀材料,解答下列問(wèn)題:
(1)方程|+3|=4的解為 ;
(2)解不等式:|-3|≥5;
(3)解不等式:|-3|+|+4|≥9
【答案】(1)x=1或x=-7(2)x≤-2或x≥8(3)x≥4或x≤-5
【解析】(1)利用在數(shù)軸上到-3對(duì)應(yīng)的點(diǎn)的距離等于4的點(diǎn)對(duì)應(yīng)的數(shù)為1或-7求解即可;
(2)先求出|x-3|=5的解,再求|x-3|≥5的解集即可;
(3)先在數(shù)軸上找出|x-3|+|x+4|=9的解,即可得出不等式|x-3|+|x+4|≥9的解集.
(1)∵在數(shù)軸上到-3對(duì)應(yīng)的點(diǎn)的距離等于4的點(diǎn)對(duì)應(yīng)的數(shù)為1或-7,
∴方程|x+3|=4的解為x=1或x=-7.
(2)在數(shù)軸上找出|x-3|=5的解.
∵在數(shù)軸上到3對(duì)應(yīng)的點(diǎn)的距離等于5的點(diǎn)對(duì)應(yīng)的數(shù)為-2或8,
∴方程|x-3|=5的解為x=-2或x=8,
∴不等式|x-3|≥5的解集為x≤-2或x≥8.
(3)在數(shù)軸上找出|x-3|+|x+4|=9的解.
由絕對(duì)值的幾何意義知,該方程就是求在數(shù)軸上到3和-4對(duì)應(yīng)的點(diǎn)的距離之和等于9的點(diǎn)對(duì)應(yīng)的x的值.
∵在數(shù)軸上3和-4對(duì)應(yīng)的點(diǎn)的距離為7,
∴滿足方程的x對(duì)應(yīng)的點(diǎn)在3的右邊或-4的左邊.
若x對(duì)應(yīng)的點(diǎn)在3的右邊,可得x=4;若x對(duì)應(yīng)的點(diǎn)在-4的左邊,可得x=-5,
∴方程|x-3|+|x+4|=9的解是x=4或x=-5,
∴不等式|x-3|+|x+4|≥9的解集為x≥4或x≤-5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和B為圓心,以相同的長(zhǎng)(大于 AB)為半徑作弧,兩弧相交于點(diǎn)M和N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E,連接CD,下列結(jié)論錯(cuò)誤的是( )
A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年共享單車(chē)橫空出世,更好地解決了人們“最后一公里”出行難的問(wèn)題,截止到2016年底,已知“摩拜單車(chē)”投放數(shù)量有50萬(wàn)輛,“ofo共享單車(chē)”的投放數(shù)量是“摩拜單車(chē)”投放數(shù)量的1.6倍,“ofo共享單車(chē)”注冊(cè)用戶(hù)量比“摩拜單車(chē)”的注冊(cè)用戶(hù)量多210萬(wàn)人,據(jù)統(tǒng)計(jì)使用一輛“ofo共享單車(chē)”的平均人數(shù)比使用一輛“摩拜單車(chē)”的平均人數(shù)少3人,假設(shè)注冊(cè)這兩種單車(chē)的用戶(hù)都在使用共享單車(chē),求2016年“ofo共享單車(chē)”和“摩拜單車(chē)”的注冊(cè)用戶(hù)量各多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=2,以點(diǎn)A為圓心,AC的長(zhǎng)為半徑作 交AB于點(diǎn)E,以點(diǎn)B為圓心,BC的長(zhǎng)為半徑作 交AB于點(diǎn)D,則陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)D為△ABC邊BC的延長(zhǎng)線上一點(diǎn).
(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度數(shù);
(2)若∠ABC的角平分線與∠ACD的角平分線交于點(diǎn)M,過(guò)點(diǎn)C作CP⊥BM于點(diǎn)P.
求證: ;
(3)在(2)的條件下,將△MBC以直線BC為對(duì)稱(chēng)軸翻折得到△NBC,∠NBC的角平分線與∠NCB的角平分線交于點(diǎn)Q(如圖2),試探究∠BQC與∠A有怎樣的數(shù)量關(guān)系,請(qǐng)寫(xiě)出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列等式:
12×231=132×21, 14×451=154×41, 32×253=352×23, 34×473=374×43,45×594=495×54,……
以上每個(gè)等式中兩邊數(shù)字是分別對(duì)稱(chēng)的,且每個(gè)等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱(chēng)這類(lèi)等式為“數(shù)字對(duì)稱(chēng)等式”.
(1)根據(jù)上述各式反映的規(guī)律填空,使式子成為“數(shù)字對(duì)稱(chēng)等式”:
①35× = ×53; ② ×682=286× .
(2)設(shè)數(shù)字對(duì)稱(chēng)式左邊的兩位數(shù)的十位數(shù)字為m,個(gè)位數(shù)字為n,且2≤m+n≤9.用含m,n的代數(shù)式表示數(shù)字對(duì)稱(chēng)式左邊的兩位數(shù)與三位數(shù)的乘積P,并求出P 能被110整除時(shí)mn的值.(其中乘法公式))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜加工公司先后兩批次收購(gòu)蒜薹(tái)共100噸.第一批蒜薹價(jià)格為4000元/噸;因蒜薹大量上市,第二批價(jià)格跌至1000元/噸.這兩批蒜薹共用去16萬(wàn)元.
(1)求兩批次購(gòu)進(jìn)蒜薹各多少?lài)崳?/span>
(2)公司收購(gòu)后對(duì)蒜薹進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤(rùn)400元,精加工每噸利潤(rùn)1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為多少?lài)?最大利?rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O半徑為4cm,其內(nèi)接正六邊形ABCDEF,點(diǎn)P,Q同時(shí)分別從A,D兩點(diǎn)出發(fā),以1cm/s速度沿AF,DC向中點(diǎn)F,G運(yùn)動(dòng).連接PB,QE,設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)求證:四邊形PEQB為平行四邊形;
(2)填空: ①當(dāng)t=s時(shí),四邊形PBQE為菱形;
②當(dāng)t=s時(shí),四邊形PBQE為矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com