【題目】若點,在數(shù)軸上對應的數(shù)為,則稱為點之間的距離,記作.已知數(shù)軸上兩點,對應的數(shù)分別為,且滿足,點為數(shù)軸上一動點,其對應的數(shù)為.

1)若點到點的距離相等,則點對應的數(shù)是_________.

2)數(shù)軸上是否存在點,使?若存在,請求出的值;若不存在,請說明理由.

3)當點以每秒1個單位長度的速度從原點向左運動時,點以每秒3個單位長度向左運動,點以每秒15個單位長度向左運動,若它們同時出發(fā),幾秒鐘后點到點的距離相等?

【答案】11;(2-35;(3

【解析】

1)先根據(jù)非負性得到a,b的值,再根據(jù)中點的性質(zhì)即可求解;

2)根據(jù)題意分兩種情況即可求解;

3)根據(jù)題意分當點未追上點時和當點追上點,,重合時,分別進行求解即可.

1)∵

a=-2b=4

數(shù)軸上兩點,對應的數(shù)分別為-24

∵點到點的距離相等

P點表示的數(shù)為

故填:1;

2)有兩種情況

當點在點的左側(cè)時

解得,

當點在點的右側(cè)時

解得,

3)設秒后點到點的距離相等

秒后,點表示的數(shù)為

表示的數(shù)為

表示的數(shù)為

當點未追上點

解得,

當點追上點,重合時

解得,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,∠DAB=60°,點E,F(xiàn)分別在CD,AB的延長線上,且AE=AD,CF=CB.

(1)求證:四邊形AFCE是平行四邊形.

(2)若去掉已知條件的“∠DAB=60°,上述的結(jié)論還成立嗎 ”若成立,請寫出證明過程;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是(
A.
B.2
C.2
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,平分于點,于點,如果,,那么的長為________,的長為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小東設計的“作邊上的高線”的尺規(guī)作圖過程.

已知:.

求作:邊上的高線.

作法:如圖,

①以點為圓心,的長為半徑作弧,以點為圓心,的長為半徑作弧,兩弧在下方交于點;

②連接于點.

所以線段邊上的高線.

根據(jù)小東設計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵  ,  ,

∴點,分別在線段的垂直平分線上(  )(填推理的依據(jù)).

垂直平分線段.

∴線段邊上的高線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大小不同的兩個磁塊,其截面都是等邊三角形,小三角形邊長是大三角形邊長的一半,點O是小三角形的內(nèi)心,現(xiàn)將小三角形沿著大三角形的邊緣順時針滾動,當由①位置滾動到④位置時,線段OA繞點O順時針轉(zhuǎn)過的角度是(
A.240°
B.360°
C.480°
D.540°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,點邊上的一個動點(不與點中點重合),連接,點關于直線的對稱點為點,直線,交于點.

(1)如圖1,當時,根據(jù)題意將圖形補充完整,并直接寫出的度數(shù);

(2)如圖2,當時,用等式表示線段,,之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過點A(5,0),B(1,4).

(1)求直線AB的解析式;
(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標;
(3)根據(jù)圖象,寫出關于x的不等式2x﹣4>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,已知 兩點的坐標分別為 , , 是線段 上一點(與 點不重合),拋物線 )經(jīng)過點 , ,頂點為 ,拋物線 )經(jīng)過點 , ,頂點為 , , 的延長線相交于點

(1)若 , ,求拋物線 , 的解析式;
(2)若 , ,求 的值;
(3)是否存在這樣的實數(shù) ),無論 取何值,直線 都不可能互相垂直?若存在,請直接寫出 的兩個不同的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案