如圖,已知?ABCD中,過點B的直線與AC相交于點E、與AD相交于點F、與CD的延長線相交于點G,若BE=5,EF=2,則FG=
10.5
10.5
分析:根據(jù)平行四邊形可判定△AEB∽△EGC,△AEF∽△BEC,利用其對應邊成比例,可求出EG,然后用EG減去EF即可.
解答:解:∵AD∥BC,
∴△AEF∽△BEC,
AE
EC
=
EF
BE
,
又∵△ABE∽△EGC,
BE
EG
=
AE
EC
,
BE
EG
=
EF
BE
,
將BE=5,EF=2,代入求得EG=12.5,
∴FG=EG-EF=12.5-2=10.5.
故答案為:10.5.
點評:此題考查學生相似三角形的判定與性質和平行四邊形的性質的理解與掌握,利用相似三角形中的對應邊成比例是解答此題的關鍵,難度一般.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知?ABCD中,AB=4,BC=6,BC邊上的高AE=2,則DC邊上的高AF的長是
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、(1)探究規(guī)律:如圖,已知?ABCD,試用三種方法將它分成面積相等的兩部分;

(2)由上述方法,你能得到什么一般性的結論;
(3)解決問題:有兄弟倆分家時,原來共同承包的一塊平行四邊形田地ABCD,現(xiàn)要進行平均劃分,由于在這塊地里有一口水井P,如圖所示,為了兄弟倆都能方便使用這口井,兄弟倆在劃分時犯難了,聰明的你能幫他們解決這個問題嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、如圖,已知?ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.
(1)試說明DE=BC;
(2)試問AB與DG+FC之間有何數(shù)量關系?寫出你的結論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知ABCD是圓的內接四邊形,對角線AC和BD相交于E,BC=CD=4,AE=6,如果線段BE和DE的長都是整數(shù),則BD的長等于
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知ABCD是圓O的內接四邊形,AB=BD,BM⊥AC于M,求證:AM=DC+CM.

查看答案和解析>>

同步練習冊答案