以坐標(biāo)原點為圓心,1為半徑的圓分別交x,y軸的正半軸于點A,B.
(1)如圖一,動點P從點A處出發(fā),沿x軸向右勻速運動,與此同時,動點Q從點B處出發(fā),沿圓周按順時針方向勻速運動.若點Q的運動速度比點P的運動速度慢,經(jīng)過1秒后點P運動到點(2,0),此時PQ恰好是的切線,連接OQ. 求的大。
(2)若點Q按照(1)中的方向和速度繼續(xù)運動,點P停留在點(2,0)處不動,求點Q再經(jīng)過5秒后直線PQ被截得的弦長
(1)60°
(2)
【解析】(1)解:如圖一,連結(jié)AQ.
由題意可知:OQ=OA=1.
∵OP=2,
∴A為OP的中點.
∵PQ與相切于點Q,
∴為直角三角形. …………1分
∴ . …………2分
即ΔOAQ為等邊三角形.
∴∠QOP=60°. …………3分
(2)解:由(1)可知點Q運動1秒時經(jīng)過的弧長所對的圓心角為30°,若Q按照(1)中的方向和速度繼續(xù)運動,那么再過5秒,則Q點落在與y軸負(fù)半軸的交點的位置(如圖二).設(shè)直線PQ與的交點為D,過O作OC⊥QD于點C,則C為QD的中點.
…………4分
∵∠QOP=90°,OQ=1,OP=2,
∴QP=. …………5分
∵,
∴OC= . …………6分
∵OC⊥QD,OQ=1,OC=,
∴QC=.
∴QD=. …………7分
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com