【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上一點(diǎn),且AB=10.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù) ;當(dāng)t=3時(shí),OP=
(2)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒8個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P,R同時(shí)出發(fā),問點(diǎn)R運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)P?
(3)動(dòng)點(diǎn)R從點(diǎn)B出發(fā),以每秒8個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P,R同時(shí)出發(fā),問點(diǎn)R運(yùn)動(dòng)多少秒時(shí)PR相距2個(gè)單位長(zhǎng)度?
【答案】(1)-4,18;(2)2;(3)1或3.
【解析】
試題(1)由OB=AB-OA=10-6=4,得到數(shù)軸上點(diǎn)B表示的數(shù),OP=3×6=18;
(2)設(shè)點(diǎn)R運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)P,則OC=6x,BC=8x,由BC-OC=OB,得到8x-6x=4,解方程即可得到答案;
(3)設(shè)點(diǎn)R運(yùn)動(dòng)x秒時(shí),PR=2.分兩種情況:一種情況是點(diǎn)R在點(diǎn)P的左側(cè);另一種情況是點(diǎn)R在點(diǎn)P的右側(cè),分別列方程,然后解一元一次方程即可.
試題解析:(1)OB=AB-OA=10-6=4,所以數(shù)軸上點(diǎn)B表示的數(shù)是-4,OP=3×6=18;
(2)設(shè)點(diǎn)R運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)P,則OC=6x,BC=8x,∵BC-OC=OB,∴8x-6x=4,解得:x=2,∴點(diǎn)R運(yùn)動(dòng)2秒時(shí),在點(diǎn)C處追上點(diǎn)P;
(3)設(shè)點(diǎn)R運(yùn)動(dòng)x秒時(shí),PR=2.分兩種情況:一種情況是當(dāng)點(diǎn)R在點(diǎn)P的左側(cè)時(shí),8x=4+6x-2即x=1;另一種情況是當(dāng)點(diǎn)R在點(diǎn)P的右側(cè)時(shí),8x=4+6x+2即x=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E、F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù) a,b 在數(shù)軸上的位置如圖所示,則下列各式中一定成立的是( )
A. ﹣a>b B. a+b>0 C. a﹣b>a+b D. |a|+|b|<|a+b|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這
個(gè)分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫序號(hào)即可);
(2)若為正整數(shù),且為“和諧分式”,請(qǐng)寫出的值;
(3)在化簡(jiǎn)時(shí),
小東和小強(qiáng)分別進(jìn)行了如下三步變形:
小東:
小強(qiáng):
顯然,小強(qiáng)利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡(jiǎn)單,
原因是: ,
請(qǐng)你接著小強(qiáng)的方法完成化簡(jiǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】孝感市在創(chuàng)建國(guó)家級(jí)園林城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買A種樹木2棵,B種樹木5棵,共需600元;購(gòu)買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購(gòu)買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買樹木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)2,x,4,3,3的平均數(shù)是3,則這組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差分別是( 。
A.3,3,0.4
B.2,3,2
C.3,2,0.4
D.3,3,2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+b與反比例函數(shù)y= (x>0)的圖象交于A(1,4),B(4,n)兩點(diǎn),與x軸、y軸分別交于C、D兩點(diǎn).
(1)m= , n=;若M(x1 , y1),N(x2 , y2)是反比例函數(shù)圖象上兩點(diǎn),且0<x1<x2 , 則y1y2(填“<”或“=”或“>”);
(2)若線段CD上的點(diǎn)P到x軸、y軸的距離相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=2 cm,AD=4cm,AC⊥BC,則△DBC比△ABC的周長(zhǎng)長(zhǎng)cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com