分析 (1)證△EAF≌△CAF,推出EF=CF,∠E=∠ACF,根據(jù)等腰三角形性質(zhì)推出∠E=∠ABE,即可得出答案;
(2)在FB上截取BM=CF,連接AM,證△ABM≌△ACF,推出EF=FC=BM,AF=AM,推出△AMF是等邊三角形,推出MF=AF,即可得出答案;
(3)①在FB上截取BM=CF,連接AM,證△ABM≌△ACF,推出EF=FC=BM,AF=AM,推出△AMF是等腰直角三角形,推出MF=$\sqrt{2}$AF,即可得出答案;
②只需在CF上截取CG=BF,先證△AFE≌△AFC,得出CF=EF,再證△ABF≌△ACG,得出△AFG是等腰直角三角形,然后結(jié)論顯然.
解答 證明:(1)如圖1,
∵AF平分∠CAE,
∴∠EAF=∠CAF,
∵AB=AC,AB=AE,
∴AE=AC,
在△ACF和△AEF中,
$\left\{\begin{array}{l}{AE=AC}\\{∠EAF=∠CAF}\\{AF=AF}\end{array}\right.$,
∴△ACF≌△AEF(SAS),
∴∠E=∠ACF,
∵AB=AE,
∴∠E=∠ABE,
∴∠ABE=∠ACF;
(2)在FB上截取BM=CF,連接AM,如圖2,
∵△ACF≌△AEF,
∴EF=CF,∠E=∠ACF=∠ABM,
在△ABM和△ACF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠ABM=∠ACF}\\{BM=CF}\end{array}\right.$,
∴△ABM≌△ACF(SAS),
∴AM=AF,∠BAM=∠CAF,
∵AB=AC,∠ABC=60°,
∴△ABC是等邊三角形,
∴∠BAC=60°,
∴∠MAF=∠MAC+∠CAF=∠MAC+∠BAM=∠BAC=60°,
∵AM=AF,
∴△AMF為等邊三角形,
∴AF=AM=MF,
∴AF+EF=BM+MF=FB,
即AF+EF=FB;
(3)①線段AF、EF、FB不是(2)中的結(jié)論,線段AF、EF、FB的數(shù)量關(guān)系為$\sqrt{2}$AF+EF=FB,理由如下:
在FB上截取BM=CF,連接AM,如圖3,
∵△ACF≌△AEF,
∴EF=CF=BM,∠E=∠ACF=∠ABM,
在△ABM和△ACF中,
$\left\{\begin{array}{l}{AB=AC}\\{∠ABM=∠ACF}\\{BM=CF}\end{array}\right.$,
∴△ABM≌△ACF(SAS),
∴AM=AF,∠BAM=∠CAF,
∵AB=AC,∠ABC=45°,
∴△ABC是等腰直角三角形,
∴∠BAC=90°,
∴∠MAF=∠MAC+∠CAF=∠MAC+∠BAM=∠BAC=90°,
∵AM=AF,
∴△AMF為等腰直角三角形,
∴MF=$\sqrt{2}$AF,
∴FB=BM+MF=EF+$\sqrt{2}$AF,
即$\sqrt{2}$AF+EF=FB;
②如圖4,在CF上截取CG=BF,連接AG,
在△AFE和△AFC中,
$\left\{\begin{array}{l}{AF=AF}\\{∠FAE=∠FAC}\\{AE=AC}\end{array}\right.$,
∴△AFE≌△AFC(SAS),
∴FE=FC,∠FEA=∠FCA,
∵AB=AE,
∴∠ABF=∠AEF=∠ACF,
在△ABF和△ACG中,
$\left\{\begin{array}{l}{BF=CG}\\{∠FBA=∠GCA}\\{BA=CA}\end{array}\right.$,
∴△ABF≌△ACG(SAS),
∴AG=AF,∠FAB=∠GAC,
∵AB=AC,∠ABC=45°,
∴∠BAC=90°,
∴FAG=90°,
∴△AFG是等腰直角三角形,
∴FG=$\sqrt{2}$AF,
∵CF=CG+GF,
∴CF=BF+$\sqrt{2}$AF,
∴EF=BF+$\sqrt{2}$AF.
點評 本題主要考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、等邊三角形的判定與性質(zhì)、角平分線的性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識點,難度中等.熟悉各種特殊三角形的性質(zhì)、全等三角形的判定方法以及正確作出輔助線是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 72014 | B. | 1 | C. | -1 | D. | (-3)2014 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com