【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數(shù)(k≠0)的圖象上.

(1)求a的值;

(2)直接寫出點P′的坐標;

(3)求反比例函數(shù)的解析式.

【答案】(1)4;(2)P′(2,4);(3)

【解析】試題分析:(1)把(-2,a)代入y=-2x中即可求a;

(2)坐標系中任一點關于y軸對稱的點的坐標,其中橫坐標等于原來點橫坐標的相反數(shù),縱坐標不變;

(3)把P′代入y=中,求出k,即可得出反比例函數(shù)的解析式.

試題解析:(1)把(-2,a)代入y=-2x中,得a=-2×(-2)=4,

a=4;

(2)P點的坐標是(-2,4),

∴點P關于y軸的對稱點P′的坐標是(2,4);

(3)把P′(2,4)代入函數(shù)式y=,得

,

k=8,

∴反比例函數(shù)的解析式是y=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在4×5網(wǎng)格圖中,其中每個小正方形邊長均為1,梯形ABCD和五邊形EFGHK的頂點均為小正方形的頂點.

(1)以B為位似中心,在網(wǎng)格圖中作四邊形A′BC′D′,使四邊形A′BC′D′和梯形ABCD位似,且位似比為2:1;

(2)求(1)中四邊形A′BC′D′與五邊形EFGHK重疊部分的周長.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人購進一批蘋果到市場上零售,已知賣出蘋果數(shù)量x與售價y的關系如下表.

數(shù)量x(千克)

1

2

3

4

5

售價y(元)

3+0.1

6+0.2

9+0.3

12+0.4

15+0.5

則當賣出蘋果數(shù)量為10千克時,售價y_______元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△AOB的頂點O在直線l上,且AO=AB.

(1)畫出△AOB關于直線l成軸對稱的圖形△COD,且使點A的對稱點為點C ;

(2)在(1)的條件下,ACBD的位置關系是________;

(3)在(1)、(2)的條件下,聯(lián)結AD,如果∠ABD=2∠ADB,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=6,點F是AB的中點,E為BC邊上一點,且EF⊥ED,連結DF,M為DF的中點,連結MA,ME.若AM⊥ME,則AE的長為( )

A.5
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若∠AOB=65°,則它的余角是_________,它的補角是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動點,連結CP,將CP繞點C順時針方向旋轉90°得CE,連結BE,若AB=4,則BE的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABCD,AB//x軸,AB=6,點A的坐標為(1,-4),點D的坐標為(-3,4),點B在第四象限,點P是ABCD邊上的一個動點.

(1)若點P在邊BC上,PD=CD,求點P的坐標.
(2)若點P在邊AB,AD上,點P關于坐標軸對稱的點Q落在直線y=x-1上,求點P的坐標.
(3)若點P在邊AB,AD,CD上,點G是AD與y軸的交點,如圖2,過點P作y軸的平行線PM,過點G作x軸的平行線GM,它們相交于點M,將△PGM沿直線PG翻折,當點M的對應點落在坐標軸上時,求點P的坐標(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形具有而平行四邊形不具有的性質是( )

A. 對角線互相平分 B. 兩組對邊分別相等 C. 對角線互相垂直 D. 相鄰兩角互補

查看答案和解析>>

同步練習冊答案