【題目】先化簡(jiǎn),再求值

1)(-1,其中x的值從不等式的正整數(shù)解中選。

÷a+2-),其中a2+3a-1=0

【答案】(1),-2;(2),.

【解析】

(1)直接將括號(hào)里面通分化簡(jiǎn),進(jìn)而利用分式混合運(yùn)算法則計(jì)算,進(jìn)而解不等式組,得出符合題意的x的值,進(jìn)而得出答案.

(2)首先通分,并根據(jù)同分母分式的加法法則,化簡(jiǎn)小括號(hào)內(nèi)的算式;然后計(jì)根據(jù)分式的除法化成最簡(jiǎn)結(jié)果,再把a2+3a-1=0變形代入化簡(jiǎn)后的式子,求出化簡(jiǎn)后式子的值即可.

(1)(-1)÷

=×,

=(-×,

=×

=,

解不等式組得:-1x<3,

當(dāng)x=2時(shí),原式==-2.

故答案為:,-2.

(2)÷(a+2),

=÷=×

=;

∵a2+3a1=0

∴a2+3a=1,

∴3a2+9a=3,

故原式=.

故答案為:,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)通過計(jì)算下列各式的值探究問題:

; ; ;

探究:對(duì)于任意非負(fù)有理數(shù)a,

; ;

探究:對(duì)于任意負(fù)有理數(shù)a,

綜上,對(duì)于任意有理數(shù)a,

(2)應(yīng)用(1)所得的結(jié)論解決問題:有理數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,化簡(jiǎn):+|a+b|.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)CCF平分∠DCEDE于點(diǎn)F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)計(jì)劃從一廠家購進(jìn)若干部新型手機(jī)以滿足市場(chǎng)需求.已知該廠家生產(chǎn)三種不同型號(hào)的手機(jī),出廠價(jià)分別是甲種型號(hào)手機(jī)1800/,乙種型號(hào)手機(jī)600/,丙種型號(hào)手機(jī)1200/部.商場(chǎng)在經(jīng)銷中甲種型號(hào)手機(jī)可賺200/,乙種型號(hào)手機(jī)可賺100/丙種型號(hào)手機(jī)可賺120/部.

(1)若商場(chǎng)用6萬元同時(shí)購進(jìn)兩種不同型號(hào)的手機(jī)共40,并恰好將錢用完請(qǐng)你通過計(jì)算分析進(jìn)貨方案;

(2)(1)的條件下,求盈利最多的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別落在x軸、y軸上,O為坐標(biāo)原點(diǎn),且OA=8,OC=4,連接AC,將矩形OABC對(duì)折,使點(diǎn)A與點(diǎn)C重合,折痕ED與BC交于點(diǎn)D,交OA于點(diǎn)E,連接AD,如圖①.
(1)求點(diǎn)D的坐標(biāo)和AD所在直線的函數(shù)關(guān)系式;
(2)⊙M的圓心M始終在直線AC上(點(diǎn)A除外),且⊙M始終與x軸相切,如圖②.
①求證:⊙M與直線AD相切;
②圓心M在直線AC上運(yùn)動(dòng),在運(yùn)動(dòng)過程中,能否與y軸也相切?如果能相切,求出此時(shí)⊙M與x軸、y軸和直線AD都相切時(shí)的圓心M的坐標(biāo);如果不能相切,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:閱讀下列材料:已知二次三項(xiàng)式2x2+x+a有一個(gè)因式是(x+2),求另一個(gè)因式以及a 的值

解:設(shè)另一個(gè)因式是(2x+b),

根據(jù)題意,得2x2+x+a=(x+2)(2x+b),

展開,得2x2+x+a =2x2+(b+4)x+2b,

所以,解得,

所以,另一個(gè)因式是(2x3),a 的值是6.

請(qǐng)你仿照以上做法解答下題:已知二次三項(xiàng)式3x2 10x m 有一個(gè)因式是(x+4),求另一個(gè)因式以及m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】縣內(nèi)某小區(qū)正在緊張建設(shè)中,現(xiàn)有大量的沙石需要運(yùn)輸,“建安”車隊(duì)有載重量為8噸、10噸的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸110噸沙石.
(1)求“建安”車隊(duì)載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,“建安”車隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共6輛,車隊(duì)有多少種購買方案,請(qǐng)你一一寫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:∠1和∠4AB、______________所截得的________角,∠3和∠5_______、____________所截得的_________角,∠2和∠5______、______________所截得的________角,AC、BCAB所截得的同旁內(nèi)角是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過A、C兩點(diǎn),且AB=2.

(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒;設(shè)s= ,當(dāng)t為何值時(shí),s有最小值,并求出最小值.

(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案