(2005•鎮(zhèn)江)已知:如圖,梯形ABCD中,AD∥BC,E是AB的中點,直線CE交DA的延長線于點F.
(1)求證:△BCE≌△AFE;
(2)若AB⊥BC且BC=4,AB=6,求EF的長.

【答案】分析:(1)直接根據(jù)AE=BE,∠B=∠EAF,∠BCE=∠F(AAS)可判定△BCE≌△AFE;
(2)根據(jù)直角梯形的性質(zhì),結(jié)合(1)中的證明△BCE≌△AFE得到AF=BC=4,利用勾股定理可求出EF=5.
解答:(1)證明:∵AD∥BC,E是AB的中點,
∴AE=BE,∠B=∠EAF,∠BCE=∠F.
∴△BCE≌△AFE(AAS).

(2)解:∵AD∥BC,
∴∠DAB=∠ABC=90°.
∵AE=BE,∠AEF=∠BEC,
∴△BCE≌△AFE.
∴AF=BC=4.
∵EF2=AF2+AE2=9+16=25,
∴EF=5.
點評:主要考查了全等三角形的判定和梯形的性質(zhì).要會利用全等的性質(zhì)得到相等的關(guān)系和直角梯形的性質(zhì).掌握其判定及其性質(zhì)并會靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•鎮(zhèn)江)已知二次函數(shù)的圖象經(jīng)過(0,0),(1,-1),(-2,14)三點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)這個二次函數(shù)的圖象與直線y=x+t(t≤1)相交于(x1,y1),(x2,y2)兩點(x1≠x2).
①求t的取值范圍;
②設(shè)m=y12+y22,求m與t之間的函數(shù)關(guān)系式及m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2005•鎮(zhèn)江)已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象相交于點(2,1).
求:(1)k,b的值;
(2)兩函數(shù)圖象的另一個交點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•鎮(zhèn)江)已知二次函數(shù)的圖象經(jīng)過(0,0),(1,-1),(-2,14)三點.
(1)求這個二次函數(shù)的解析式;
(2)設(shè)這個二次函數(shù)的圖象與直線y=x+t(t≤1)相交于(x1,y1),(x2,y2)兩點(x1≠x2).
①求t的取值范圍;
②設(shè)m=y12+y22,求m與t之間的函數(shù)關(guān)系式及m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•鎮(zhèn)江)已知反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象相交于點(2,1).
求:(1)k,b的值;
(2)兩函數(shù)圖象的另一個交點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•鎮(zhèn)江)已知:如圖,四邊形ABCD中,∠C=90°,∠ABD=∠CBD,AB=CB,P是BD上一點,PE⊥BC,PF⊥CD,垂足分別為E、F.
(1)求證:PA=EF;
(2)若BD=10,P是BD的中點,sin∠BAP=,求四邊形PECF的面積.

查看答案和解析>>

同步練習(xí)冊答案