(2004•長(zhǎng)沙)下列一元二次方程中,有實(shí)數(shù)根的方程是( )
A.x2-x+1=0
B.x2-2x+3=0
C.x2+x-1=0
D.x2+4=0
【答案】分析:只要判斷每個(gè)方程的根的判別式的值與零的關(guān)系就可以了.
解答:解:A、△=(-1)2-4×1×1=-3<0,沒有實(shí)數(shù)根;
B、△=(-2)2-4×1×3=-8<0,沒有實(shí)數(shù)根;
C、△=12-2×1×(-1)=3>0,有實(shí)數(shù)根;
D、△=0-4×1×4=-16<0,沒有實(shí)數(shù)根.
故選C.
點(diǎn)評(píng):總結(jié):一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
(3)△<0?方程沒有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2004•長(zhǎng)沙)如圖,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P為下底BC上一點(diǎn)(不與B、C重合),連接AP,過P作∠APE=∠B,交DC于E.
(1)求證:△ABP∽△PCE;
(2)求等腰梯形的腰AB的長(zhǎng);
(3)在底邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3?如果存在,求BP的長(zhǎng);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2004•長(zhǎng)沙)如圖,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P為下底BC上一點(diǎn)(不與B、C重合),連接AP,過P作∠APE=∠B,交DC于E.
(1)求證:△ABP∽△PCE;
(2)求等腰梯形的腰AB的長(zhǎng);
(3)在底邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3?如果存在,求BP的長(zhǎng);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《分式方程》(03)(解析版) 題型:解答題

(2004•長(zhǎng)沙)如圖,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P為下底BC上一點(diǎn)(不與B、C重合),連接AP,過P作∠APE=∠B,交DC于E.
(1)求證:△ABP∽△PCE;
(2)求等腰梯形的腰AB的長(zhǎng);
(3)在底邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3?如果存在,求BP的長(zhǎng);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年江蘇省無(wú)錫市南長(zhǎng)區(qū)塘南中學(xué)初三數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2004•長(zhǎng)沙)如圖,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P為下底BC上一點(diǎn)(不與B、C重合),連接AP,過P作∠APE=∠B,交DC于E.
(1)求證:△ABP∽△PCE;
(2)求等腰梯形的腰AB的長(zhǎng);
(3)在底邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3?如果存在,求BP的長(zhǎng);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年湖南省長(zhǎng)沙市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•長(zhǎng)沙)如圖,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P為下底BC上一點(diǎn)(不與B、C重合),連接AP,過P作∠APE=∠B,交DC于E.
(1)求證:△ABP∽△PCE;
(2)求等腰梯形的腰AB的長(zhǎng);
(3)在底邊BC上是否存在一點(diǎn)P,使得DE:EC=5:3?如果存在,求BP的長(zhǎng);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案