【題目】如圖,AB是半圓O的直徑,半徑OCAB于點(diǎn)O,點(diǎn)D的中點(diǎn),連接CD、OD.下列四個(gè)結(jié)論:①ACOD;②CE=OE;③ODEADO;④∠ADC=BOD.其中正確結(jié)論的序號(hào)是(

A.①④B.①②④C.②③D.①②③④

【答案】A

【解析】

如圖,利用圓周角定理得∠1=3,加上∠1=2,則∠2=3,于是可對(duì)①進(jìn)行判斷;利用ACOD可判定△ACE∽△DOE,則,再判定△AOC為等腰直角三角形得到AC=OA=OD,所以CE=OE,于是可對(duì)②進(jìn)行判斷;利用圓周角定理得到∠COD=21,則根據(jù)相似三角形的判定方法可對(duì)③進(jìn)行判斷;利用圓周角定理可計(jì)算出∠ADC=45°,而∠BOD=45°,則可對(duì)④進(jìn)行判斷.

解:如圖,

∵點(diǎn)D的中點(diǎn),

,

∴∠1=3

OA=OD,

∴∠1=2

∴∠2=3,

ACOD,所以①正確;

∴△ACE∽△DOE,

,

OCOA,

∴△AOC為等腰直角三角形,

AC=OA=OD,

CE=OE,所以②錯(cuò)誤;

∵點(diǎn)D的中點(diǎn),

∴∠BOD=COD

∵∠BOD=21

∴∠COD=21,

而∠ODE=ADO

∴△ODE與△ADE不相似,所以③錯(cuò)誤;

∵∠ADC=AOC=45°,∠BOD=BOC=45°,

∴∠ADC=BOD,所以④正確.

∴正確的結(jié)論是①④,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師提出如下問題:

如圖,已知,,用尺規(guī)作圖的方法在上取一點(diǎn),使得.

作法:

1)作線段的垂直平分線.

2)直線于點(diǎn).

則點(diǎn)就是所求的點(diǎn).

證明:連接

直線垂直平分線段

(填寫正確的依據(jù))

.

解決下列問題:

1)利用尺規(guī)作圖確定 點(diǎn)的位置;

2)補(bǔ)全證明過程中的依據(jù);

3)如果題干無條件,在線段上點(diǎn)不一定存在,在請(qǐng)畫圖說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC為等邊三角形,以AB邊為腰作等腰RtABD,∠BAD=90,ACBD交于點(diǎn)E,連接CD,過點(diǎn)DDFBCBC延長(zhǎng)線于點(diǎn)F

1)如圖1,若DF1,AB= ;AE= ;

2)如圖2,將CDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)至C1DF1的位置,點(diǎn)C,F的對(duì)應(yīng)點(diǎn)分別為C1,F1,當(dāng)DC1平分∠EDC時(shí),DC1AC交于點(diǎn)M,在AM上取點(diǎn)N,使ANDM,連接DN,求tanNDM的值.

3)如圖3,將CDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)至C1DF1的位置,點(diǎn)C,F的對(duì)應(yīng)點(diǎn)分別為C1F1,連接AF1BC1,點(diǎn)GBC1的中點(diǎn),連接AG.求的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖像與軸正半軸交于點(diǎn),平行于軸的直線與該拋物線交于、兩點(diǎn)(點(diǎn)位于點(diǎn)左側(cè)),與拋物線對(duì)稱軸交于點(diǎn)

1)求的值;

2)設(shè)、軸上的點(diǎn)(點(diǎn)位于點(diǎn)左側(cè)),四邊形為平行四邊形.過點(diǎn)、分別作軸的垂線,與拋物線交于點(diǎn)、.若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市要開展不忘初心,牢記使命主題演講比,某中學(xué)將參加本校選拔賽的50名選手的成績(jī)(滿分為100分,得分為正整數(shù))分成五組,并繪制了不完整的統(tǒng)計(jì)圖表.

分?jǐn)?shù)段

頻數(shù)

頻率

69.575.5

9

0.18

75.581.5

m

0.16

81.587.5

14

0.28

87.593.5

16

n

93.599.5

3

0.06

1)表中n   ,并在圖中補(bǔ)全頻數(shù)直方圖.

2)甲同學(xué)的比賽成績(jī)是50位參賽選手成績(jī)的中位數(shù),據(jù)此推測(cè)他的成績(jī)落在   分?jǐn)?shù)段內(nèi);

3)選拔賽時(shí),成績(jī)?cè)?/span>93.599.5的三位選手中,男生2人,女生1人,學(xué)校從中隨機(jī)確定2名選手參加全市決賽,請(qǐng)用列表法或樹狀圖法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】頂點(diǎn)為D的拋物線y=﹣x2+bx+cx軸于AB(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0)

(1)求出拋物線的解析式;

(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)Mx軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求Sx之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Px軸的正半軸上一個(gè)動(dòng)點(diǎn),過Px軸的垂線,交直線y=﹣x+mG,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,M,NP,Q分別為邊ABBC,CDDA上的點(diǎn)(不與端點(diǎn)重合),對(duì)于任意矩形ABCD,下面四個(gè)結(jié)論中,

①存在無數(shù)個(gè)四邊形MNPQ是平行四邊形;

②存在無數(shù)個(gè)四邊形MNPQ是矩形;

③存在無數(shù)個(gè)四邊形MNPQ是菱形;

④至少存在一個(gè)四邊形MNPQ是正方形,

其中正確的結(jié)論的個(gè)數(shù)為( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1,圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.

1)在圖1中畫出以AB為底邊的等腰直角三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上;

2)在圖2中畫出以AB為腰的等腰三角形ABD,點(diǎn)D在小正方形的頂點(diǎn)上,且ABD的面積為8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線軸交于,兩點(diǎn),與軸交于點(diǎn)

1)求拋物線的函數(shù)表達(dá)式

2)如圖1,點(diǎn)為第四象限拋物線上一點(diǎn),連接,交于點(diǎn),連接,記的面積為,的面積為,求的最大值;

3)如圖2,連接,,過點(diǎn)作直線,點(diǎn),分別為直線和拋物線上的點(diǎn).試探究:在第一象限是否存在這樣的點(diǎn),,使.若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案