【題目】如圖,AB是半圓O的直徑,半徑OC⊥AB于點(diǎn)O,點(diǎn)D是的中點(diǎn),連接CD、OD.下列四個(gè)結(jié)論:①ACOD;②CE=OE;③△ODE∽△ADO;④∠ADC=∠BOD.其中正確結(jié)論的序號(hào)是( )
A.①④B.①②④C.②③D.①②③④
【答案】A
【解析】
如圖,利用圓周角定理得∠1=∠3,加上∠1=∠2,則∠2=∠3,于是可對(duì)①進(jìn)行判斷;利用AC∥OD可判定△ACE∽△DOE,則,再判定△AOC為等腰直角三角形得到AC=OA=OD,所以CE=OE,于是可對(duì)②進(jìn)行判斷;利用圓周角定理得到∠COD=2∠1,則根據(jù)相似三角形的判定方法可對(duì)③進(jìn)行判斷;利用圓周角定理可計(jì)算出∠ADC=45°,而∠BOD=45°,則可對(duì)④進(jìn)行判斷.
解:如圖,
∵點(diǎn)D是的中點(diǎn),
即,
∴∠1=∠3,
∵OA=OD,
∴∠1=∠2,
∴∠2=∠3,
∴AC∥OD,所以①正確;
∴△ACE∽△DOE,
∴,
∵OC⊥OA,
∴△AOC為等腰直角三角形,
∴AC=OA=OD,
∴
∴CE=OE,所以②錯(cuò)誤;
∵點(diǎn)D是的中點(diǎn),
∴∠BOD=∠COD
∵∠BOD=2∠1
∴∠COD=2∠1,
而∠ODE=∠ADO,
∴△ODE與△ADE不相似,所以③錯(cuò)誤;
∵∠ADC=∠AOC=45°,∠BOD=∠BOC=45°,
∴∠ADC=∠BOD,所以④正確.
∴正確的結(jié)論是①④,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
如圖,已知,,用尺規(guī)作圖的方法在上取一點(diǎn),使得.
作法:
(1)作線段的垂直平分線.
(2)直線交于點(diǎn).
則點(diǎn)就是所求的點(diǎn).
證明:連接
直線垂直平分線段
(填寫正確的依據(jù))
.
解決下列問題:
(1)利用尺規(guī)作圖確定 點(diǎn)的位置;
(2)補(bǔ)全證明過程中的依據(jù);
(3)如果題干無條件,在線段上點(diǎn)不一定存在,在請(qǐng)畫圖說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABC為等邊三角形,以AB邊為腰作等腰RtABD,∠BAD=90,AC與BD交于點(diǎn)E,連接CD,過點(diǎn)D作DF⊥BC交BC延長(zhǎng)線于點(diǎn)F.
(1)如圖1,若DF=1,AB= ;AE= ;
(2)如圖2,將CDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)至△C1DF1的位置,點(diǎn)C,F的對(duì)應(yīng)點(diǎn)分別為C1,F1,當(dāng)DC1平分∠EDC時(shí),DC1與AC交于點(diǎn)M,在AM上取點(diǎn)N,使AN=DM,連接DN,求tan∠NDM的值.
(3)如圖3,將CDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn)至C1DF1的位置,點(diǎn)C,F的對(duì)應(yīng)點(diǎn)分別為C1,F1,連接AF1、BC1,點(diǎn)G是BC1的中點(diǎn),連接AG.求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸正半軸交于點(diǎn),平行于軸的直線與該拋物線交于、兩點(diǎn)(點(diǎn)位于點(diǎn)左側(cè)),與拋物線對(duì)稱軸交于點(diǎn).
(1)求的值;
(2)設(shè)、是軸上的點(diǎn)(點(diǎn)位于點(diǎn)左側(cè)),四邊形為平行四邊形.過點(diǎn)、分別作軸的垂線,與拋物線交于點(diǎn)、.若,求、的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市要開展“不忘初心,牢記使命”主題演講比,某中學(xué)將參加本校選拔賽的50名選手的成績(jī)(滿分為100分,得分為正整數(shù))分成五組,并繪制了不完整的統(tǒng)計(jì)圖表.
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
69.5~75.5 | 9 | 0.18 |
75.5~81.5 | m | 0.16 |
81.5~87.5 | 14 | 0.28 |
87.5~93.5 | 16 | n |
93.5~99.5 | 3 | 0.06 |
(1)表中n= ,并在圖中補(bǔ)全頻數(shù)直方圖.
(2)甲同學(xué)的比賽成績(jī)是50位參賽選手成績(jī)的中位數(shù),據(jù)此推測(cè)他的成績(jī)落在 分?jǐn)?shù)段內(nèi);
(3)選拔賽時(shí),成績(jī)?cè)?/span>93.5~99.5的三位選手中,男生2人,女生1人,學(xué)校從中隨機(jī)確定2名選手參加全市決賽,請(qǐng)用列表法或樹狀圖法求恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】頂點(diǎn)為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點(diǎn)C,直線y=﹣x+m經(jīng)過點(diǎn)C,交x軸于E(4,0).
(1)求出拋物線的解析式;
(2)如圖1,點(diǎn)M為線段BD上不與B、D重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作x軸的垂線,垂足為N,設(shè)點(diǎn)M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)P為x軸的正半軸上一個(gè)動(dòng)點(diǎn),過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點(diǎn)G的對(duì)應(yīng)點(diǎn)F恰好落在y軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,M,N,P,Q分別為邊AB,BC,CD,DA上的點(diǎn)(不與端點(diǎn)重合),對(duì)于任意矩形ABCD,下面四個(gè)結(jié)論中,
①存在無數(shù)個(gè)四邊形MNPQ是平行四邊形;
②存在無數(shù)個(gè)四邊形MNPQ是矩形;
③存在無數(shù)個(gè)四邊形MNPQ是菱形;
④至少存在一個(gè)四邊形MNPQ是正方形,
其中正確的結(jié)論的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的兩個(gè)端點(diǎn)均在小正方形的頂點(diǎn)上.
(1)在圖1中畫出以AB為底邊的等腰直角三角形ABC,點(diǎn)C在小正方形的頂點(diǎn)上;
(2)在圖2中畫出以AB為腰的等腰三角形ABD,點(diǎn)D在小正方形的頂點(diǎn)上,且△ABD的面積為8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式
(2)如圖1,點(diǎn)為第四象限拋物線上一點(diǎn),連接,交于點(diǎn),連接,記的面積為,的面積為,求的最大值;
(3)如圖2,連接,,過點(diǎn)作直線,點(diǎn),分別為直線和拋物線上的點(diǎn).試探究:在第一象限是否存在這樣的點(diǎn),,使.若存在,請(qǐng)求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com