【題目】如圖,在△ABC中,BD、CE是角平分線,AM⊥BD于點M,AN⊥CE于點N.△ABC的周長為30,BC=12.則MN的長是( )
A. 15B. 9C. 6D. 3
【答案】D
【解析】
延長AM、AN分別交BC于點F、G,根據(jù)BN為∠ABC的角平分線,AN⊥BN得出∠BAN=∠G,故△ABG為等腰三角形,所以BN也為等腰三角形的中線,即AN=GN.同理AM=MF,根據(jù)三角形中位線定理即可得出結(jié)論.
∵△ABC的周長為30,BC=12.
∴AB+AC=30﹣BC=18.
延長AN、AM分別交BC于點F、G.如圖所示:
∵BN為∠ABC的角平分線,
∴∠CBN=∠ABN,
∵BN⊥AG,
∴∠ABN+∠BAN=90°,∠AGB +∠CBN=90°,
∴∠BAN=∠AGB,
∴AB=BG,
∴AN=GN,
同理AC=CF,AM=MF,
∴MN為△AFG的中位線,GF=BG+CF﹣BC,
∴MN=(AB+AC﹣BC)=(18﹣12)=3.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點是等邊內(nèi)一點,,.以為邊作等邊三角形,連接.
(1)求證:;
(2)當時(如圖②),試判斷的形狀,并說明理由;
(3)求當是多少度時,是等腰三角形?(寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富課外活動,某校將購買一些乒乓球拍和乒乓球,某商場銷售一種乒乓球拍和乒乓球,乒乓球拍每副定價80元,乒乓球每盒定價20元,“國慶節(jié)”期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案.
方案一:買一副乒乓球拍送一盒乒乓球;
方案二:乒乓球拍和乒乓球都按定價的90%付款.
某校要到該商場購買乒乓球拍20副,乒乓球盒(>20且為整數(shù)).
(1)若按方案一購買,需付款 元(用含的整式表示,要化簡); 若按方案二購買,需付款 元(用含的整式表示,要化簡).
(2)若30,通過計算說明此時按哪種方案購買較為合算?
(3)當30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是線段AB上一點,M是線段AC的中點,N是線段BC的中點.
(1)如果AB=10cm,AM=3cm,求CN的長;
(2)如果MN=6cm,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解本校七年級學(xué)生的課外興趣愛好情況,小明對七年級一部分同學(xué)的課外興趣愛好進行了一次調(diào)查,他根據(jù)采集到的數(shù)據(jù),繪制了圖①和圖②兩個統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)在圖①中,將“科技”部分的圖補充完整;
(2)在圖②中,書法的圓心角度數(shù)是多少?
(3)這個學(xué)校七年級共有300人,請估計這個學(xué)校七年級學(xué)生課外興趣愛好是音樂和美術(shù)的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,以AB為直徑的⊙O分別交BC、AC于點D、E,且點D為BC的中點.
(1)求證:△ABC為等邊三角形;
(2)求DE的長;
(3)在線段AB的延長線上是否存在一點P,使△PBD≌△AED?若存在,請求出PB的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售A,B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40元. 商場銷售5臺A型號和1臺B型號計算器,可獲利潤76元;銷售6臺A型號和3臺B型號計算器,可獲利120元.
(1)求商場銷售A,B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格﹣進貨價格)
(2)商場準備用不多于2500元的資金購進A,B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相較于點O,EF過點O,且與AD、BC分別相交于E、F,若AB=4,BC=5,OE=1.5,則四邊形EFCD的周長是( )
A.16B.14C.12D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從樓AB的A處測得對面樓CD的頂部C的仰角為37°,底部D的俯角為45°,兩樓的水平距離BD為24 m,那么樓CD的高度約為________ m.(結(jié)果精確到1 m,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com