【題目】順次連接對角線相等的四邊形各邊中點,所得四邊形是( )
A. 矩形 B. 平行四邊形 C. 菱形 D. 任意四邊形
【答案】C
【解析】
根據(jù)題意畫出四邊形ABCD,E,F(xiàn),G,H分別為各邊的中點,寫出已知,求證,由E,H分別為AB,AD的中點,得到EH為三角形ABD的中位線,根據(jù)三角形的中位線定理得到EH平行于BD,且等于BD的一半,同理FG平行于BD,且等于BD的一半,可得出EH與FG平行且相等,根據(jù)一組對邊平行且相等的四邊形為平行四邊形得出EFGH為平行四邊形,再由EF為三角形ABC的中位線,得出EF等于AC的一半,由EH等于BD的一半,且AC=BD,可得出EH=EF,根據(jù)鄰邊相等的平行四邊形為菱形可得證.
順次連接對角線相等的四邊形各邊中點,所得四邊形是菱形,
如圖所示:
已知:E,F(xiàn),G,H分別為四邊形ABCD各邊的中點,且AC=BD,
求證:四邊形EFGH為菱形,
證明:∵E,F(xiàn),G,H分別為四邊形ABCD各邊的中點,
∴EH為△ABD的中位線,F(xiàn)G為△CBD的中位線,
∴EH∥BD,EH=BD,F(xiàn)G∥BD,F(xiàn)G=BD,
∴EH∥FG,EH=FG=BD,
∴四邊形EFGH為平行四邊形,
又EF為△ABC的中位線,
∴EF=AC,又EH=BD,且AC=BD,
∴EF=EH,
∴四邊形EFGH為菱形.
故選:C
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)圖2中間的小正方形(即陰影部分)面積可表示為________________.
(2)觀察圖2,請你寫出三個代數(shù)式(m+n)2,(m-n)2,mn之間的等量關系式:______________.
(3)根據(jù)(2)中的結論,若x+y=-6,xy=2.75,則x-y=____________.
(4)有許多代數(shù)恒等式可以用圖形的面積來表示.如圖3所示,它表示了(2m+n)(m+n)=2m2+3mn+n2.試畫出一個幾何圖形,使它的面積能表示為(m+n)(m+2n)=m2+3mn+2n2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,,,M為AB的中點,以CD為直徑畫圓P.
(1)當點M在圓P外時,求CD的長的取值范圍;
(2)當點M在圓P上時,求CD的長;
(3)當點M在圓P內時,求CD的長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=(k≠0)的圖象經過點B(3,2),點B與點C關于原點O對稱,BA⊥x軸于點A,CD⊥x軸于點D.
(1)求這個反比函數(shù)的表達式;
(2)求△ACD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)軸上,點A,B分別表示數(shù)a,b,且(a+12)2+|b﹣24|=0,記AB=|a﹣b|.
(1)求AB的值;
(2)如圖,點P,Q分別從點A,B同時出發(fā)沿數(shù)軸向右運動,點P的速度是每秒2個單位長度,點Q的速度是每秒4個單位長度,當BQ=2BP時,P點對應的數(shù)是多少?
(3)在(2)的條件下,點M從原點與P、Q點同時出發(fā)沿數(shù)軸向右運動,速度是每秒x個單位長度(2<x<4),若在運動過程中,2MP﹣MQ的值與運動的時間t無關,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知梯形ABCD中,AD∥BC,AB=AD(如圖所示).
(1)在下圖中,用尺規(guī)作∠BAD的平分線AE交BC于點E,連接DE(保留作圖痕跡,不寫作法),并證明四邊形ABED是菱形;
(2)若∠ABC=60°,EC=2BE.求證:ED⊥DC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B為定點,直線∥AB,P是直線上一動點,對于下列各值:①線段AB的長;②△PAB的周長;③△PAB的面積;④∠APB的度數(shù),其中不會隨點P的移動而變化的是(填寫所有正確結論的序號)______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作出函數(shù)y=2-2x的圖象,并根據(jù)圖象回答下列問題:
(1)y的值隨x的增大而____,減小而____;
(2)圖象與x軸的交點坐標是___;與y軸的交點坐標是____;
(3)函數(shù)y=2-2x的圖象與坐標軸所圍成的三角形的面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<3>=4,<-2.5>=-2.根據(jù)上述規(guī)定,解決下列問題:
(1)[-4.5]=______,<3.01>=____;
(2)若x為整數(shù),且[x]+<x>=2 017,求x的值;
(3)若x,y滿足方程組,求x,y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com